Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.09.2015.0188

Selection of Small Synthetic Antimicrobial Peptides Inhibiting Xanthomonas citri subsp. citri Causing Citrus Canker  

Choi, Jeahyuk (Department of Biotechnology, Yeungnam University)
Park, Euiho (Department of Biotechnology, Yeungnam University)
Lee, Se-Weon (International Technology Cooperation Center, Rural Development Administration)
Hyun, Jae-Wook (Citrus Research Station, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Baek, Kwang-Hyun (Department of Biotechnology, Yeungnam University)
Publication Information
The Plant Pathology Journal / v.33, no.1, 2017 , pp. 87-94 More about this Journal
Abstract
Citrus canker disease decreases the fruit quality and yield significantly, furthermore, emerging of streptomycin-resistant pathogens threatens the citrus industry seriously because of a lack of proper control agents. Small synthetic antimicrobial peptides (AMPs) could be a promising alternative. Fourteen hexapeptides were selected by using positional scanning of synthetic peptide combinatorial libraries. Each hexapeptide showed different antimicrobial spectrum against Bacillus, Pseudomonas, Xanthomonas, and Candida species. Intriguingly, BHC10 showed bactericidal activity exclusively on Xanthomonas citri subsp. citri (Xcc), while BHC7 was none-active exclusively against two Pseudomonas spp. at concentration of $100{\mu}g/ml$ suggesting potential selectivity constrained in hexapeptide frame. Three hexapeptides, BHC02, 06 and 11, showed bactericidal activities against various Xcc strains at concentration of $10{\mu}g/ml$. When they were co-infiltrated with pathogens into citrus leaves the disease progress was suppressed significantly. Further study would be needed to confirm the actual disease control capacity of the selected hexapeptides.
Keywords
antimicrobial peptides; bactericidal citrus canker; small synthetic; streptomycin-resistance; Xanthomonas citri subsp. citri;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Blondelle, S. E. and Lohner, K. 2000. Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55:74-87.   DOI
2 Chiou, C. S. and Jones, A. L. 1993. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J. Bacteriol. 175:732-740.   DOI
3 Choi, J., Baek, K. H. and Moon, E. 2014. Antimicrobial effects of a hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis. Plant Pathol. J. 30:245-253.   DOI
4 Choi, J. and Moon, E. 2009. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J. Microbiol. Biotechnol. 19:792-802.   DOI
5 Gordon, Y. J., Romanowski, E. G. and McDermott, A. M. 2005. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30:505-515.   DOI
6 Han, H. S., Koh, Y. J., Hur, J. S. and Jung, J. S. 2004. Occurrence of the strA-strB streptomycin resistance genes in Pseudomonas species isolated from kiwifruit plants. J. Microbiol. 42:365-368.
7 Hancock, R. E. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1:156-164.   DOI
8 Hong, S. Y., Oh, J. E., Kwon, M., Choi, M. J., Lee, J. H., Lee, B. L., Moon, H. M. and Lee, K. H. 1998. Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob. Agents Chemother. 42:2534-2541.
9 Hyun, J. W., Kim, H. J., Yi, P. H., Hwang, R. Y. and Park, E. W. 2012. Mode of action of streptomycin resistance in the citrus canker pathogen (Xanthomonas smithii subsp. citri) in Jeju Island. Plant Pathol. J. 28:207-211.   DOI
10 Koh, Y. J., Kim, G. H., Koh, H. S., Lee, Y. S., Kim, S. C. and Jung, J. S. 2012. Occurrence of a new type of Pseudomonas syringae pv. actinidiae strain of bacterial canker on kiwifruit in Korea. Plant Pathol. J. 28:423-427.   DOI
11 Levin, B. R., Perrot, V. and Walker, N. 2000. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154:985-997.
12 Li, J. and Wang, N. 2011. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 12:381-396.   DOI
13 Liu, Z., Brady, A., Young, A., Rasimick, B., Chen, K., Zhou, C. and Kallenbach, N. R. 2007. Length effects in antimicrobial peptides of the $(RW)_n$ series. Antimicrob. Agents Chemother. 51:597-603.   DOI
14 Loper, J. E., Henkels, M. D., Roberts, R. G., Grove, G. G., Willet, M. J. and Smith, T. J. 1991. Evaluation of streptomycin, oxytetracycline, and copper resistance of Erwinia amylovora isolated from pear orchards in Washington State. Plant Dis. 75:287-290.   DOI
15 Sharma, A., Bajpai, V. K. and Baek, K. H. 2013. Determination of antibacterial mode of action of Allium sativum essential oil against foodborne pathogens using membrane permeability and surface characteristic parameters. J. Food Saf. 33:197-208.   DOI
16 Maroti, G., Kereszt, A., Kondorosi, E. and Mergaert, P. 2011. Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol. 162:363-374.   DOI
17 Moller, W. J., Schroth, M. N. and Thomson, S. V. 1981. The scenario of fire blight and streptomycin resistance. Plant Dis. 65:563-568.   DOI
18 Montesinos, E. and Bardaji, E. 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem. Biodivers. 5:1225-1237.   DOI
19 Strom, M. B., Haug, B. E., Skar, M. L., Stensen, W., Stiberg, T. and Svendsen, J. S. 2003. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem. 46:1567-1570.   DOI
20 Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 31:199-210.   DOI
21 Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34 Suppl 3:S107-S110.   DOI
22 Zhang, L., Parente, J., Harris, S. M., Woods, D. E., Hancock, R. E. and Falla, T. J. 2005. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother. 49:2921-2927.   DOI
23 Behlau, F., Jones, J. B., Myers, M. E. and Graham, J. H. 2012. Monitoring for resistant populations of Xanthomonas citri subsp. citri and epiphytic bacteria on citrus trees treated with copper or streptomycin using a new semi-selective medium. Eur. J. Plant Pathol. 132:259-270.   DOI
24 Ahmad, A. A., Askora, A., Kawasaki, T., Fujie, M. and Yamada, T. 2014. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front. Microbiol. 5:321.
25 Amaral, A. M., Carvalho, S. A., Silva, L. F. C. and Machado, M. A. 2010. Reaction of genotypes of citrus species and varieties to Xanthomonas citri subsp. citri under greenhouse conditions. J. Plant Pathol. 92:519-524.
26 Bajpai, V. K., Kang, S. C., Park, E., Jeon, W. T. and Baek, K. H. 2011. Diverse role of microbially bioconverted product of cabbage (Brassica oleracea) by Pseudomonas syringe pv. T1 on inhibiting Candida species. Food Chem. Toxicol. 49:403-407.   DOI