DOI QR코드

DOI QR Code

Suppressive Effects of Bio-Sulfur on Citrus Scab

바이오 황을 이용한 감귤 더뎅이병 발병 억제 효과

  • 오명협 (제주특별자치도 농업기술원) ;
  • 현재욱 (농촌진흥청 국립원예특작과원 감귤연구소) ;
  • 박원표 (제주대학교 식물자원환경전공) ;
  • 현해남 (제주대학교 식물자원환경전공)
  • Received : 2019.11.14
  • Accepted : 2020.04.22
  • Published : 2020.05.31

Abstract

The aim of the present study was to investigate the suppressive effects of the bio-sulfur used by eco-friendly farms on the outbreak of citrus scab. To evaluate the inhibiting effect of bio-sulfur on citrus scab germ tube growth, the citrus scab pathogen Elsinoe fawcettiiwas cultured in PDB and agar media, and germ tube growth was observed after bio-sulfur treatment. At both 40 and 88 h after inoculation, germ tube formation was inhibited by 500-, 1000-, and 2000-fold diluted bio-sulfur, and at dilutions above 4000-fold, germ tube formation was observed, although growth was still inhibited, when compared to untreated cultures. Meanwhile, the occurrence of citrus scab on spring-flush leaves in the field was 40.3% in the untreated control and 5.3, 10.3, 12.3, 15.3, and 24.0% when treated with imibenconazole, 2-4 and 6-6 lime-Bordeaux mixtures, which are also used by eco-friendly farms, 500-fold diluted bio-sulfur, lime sulfur, and 1000-fold diluted bio-sulfur, respectively. The occurrence of citrus scab on citrus fruit was 79.3% in the untreated control and 4.0, 33.8, 42.0, 43.3, 44.8, and 78.0% when treated with imibenconazole, 2-4 lime-Bordeaux mixture, 6-6 lime-Bordeaux mixture, 500-fold diluted bio-sulfur, lime sulfur, and 1000-fold diluted bio-sulfur, respectively. Because citrus scab can infect citrus leaves as early as May, as the spring flush begins, preventative control should be implemented by mid- to late-April, thereby increase disease control and reducing both labor and farming costs.

본 연구에서는 친환경 농가에서 사용되고 있는 바이오 황(Bio-S, bio-sulfur)을 이용하여 감귤 더덩이병(Citrus scab)에 대한 발병 억제 효과를 알아보고자 수행되었다. 바이오 황이 감귤 더뎅이병의 발아관 생장 억제 효과는 감귤 더뎅이병균을 PDB와 Agar 배지에서 배양하여 발아관을 관찰한 결과 접종 40시간과 88시간 모두 바이오 황 500배, 1,000배, 2,000배 처리구에서 발아관 형성이 억제되었으며, 4,000배 이상 희석배수가 높아질수록 발아관은 형성되었으나 무처리구에 비해 생장이 억제되었다. 포장에서 감귤 봄순 잎에 대한 더뎅이병의 발병 억제 효과는 무처리구 이병율은 40.3%였으며, 화학농약인 Imibenconazole 수화제 이병율이 5.3%을 보였으며, 친환경 농업에 사용하는 석회보르도액 2-4식과 6-6식은 모두 10.3%, 바이오 황 500배 12.3%, 석회유황합제 15.3%로 비슷한 경향을 나타냈으며, 반면 바이오 황 1,000배에서는 24.0%로 비교적 높은 이병율을 보였다. 감귤 과실에 대한 시험결과 무처리구 이병율은 79.3%였으며, Imibenconazole 수화제 이병율은 4.0%을 보였으며, 석회보르도액 2-4식 33.8%, 6-6식 42.0%, 바이오 황 500배 43.3%, 석회유황합제 44.8%로 비슷한 효과를 나타냈으며, 반면 바이오 황 1,000배에서는 78.0%로 비교적 높은 이병율을 보였다. 따라서 감귤 더뎅이병은 봄순이 전개되는 5월부터 감귤의 잎에 발생하기 때문에 봄순이 전개되기 전인 4월 중하순부터 예방방제를 시작하여 예찰을 통해 방제하면 높은 방제율과 노동력 및 영농비용 등을 절감할 수 있을 것으로 생각된다.

Keywords

References

  1. Ahn, K. A., T. W. Moon, and B. S. Kim. 2018. An Economic Review on the Short-run Storability of Field Citrus in Jeju. Journal of the Korea Academia-Industrial cooperation Society. 19(8): 392-402. https://doi.org/10.5762/KAIS.2018.19.8.392
  2. Cha, B. J., Y. S. Lee, and H. R. Lee. 2000. The present knowledge of farmers on pest and chemical control in grapevine culture. Korean Journal of Pesticide Science. 4(1): 38-43.
  3. David, M. W. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev. Phytopathol. 26(1): 379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  4. Eom, W. H. 2016. A Study on Performance of Sulfur concrete using BIO Sulfur. M.S. Thesis, Seoul National University of Science and Technology.
  5. Fries, N. 1978. Basidiospore germination in some mycorrhiza-forming Hymenomycetes. Transactions of the British Mycological Society. 70(3): 319-324. https://doi.org/10.1016/s0007-1536(78)80128-4
  6. Hyun, J. W., L. W. Timmer, S. C. Lee, S. H. Yun, S. W. Ko, and K. S. Kim. 2001. Pathological characterization and molecular analysis of Elsinoe isolates causing scab diseases of citrus in Jeju isolates in Korea. Plant Dis. 85(9): 1013-1017. https://doi.org/10.1094/PDIS.2001.85.9.1013
  7. Hyun, J. W., S. W. Ko, D. H. Kim, S. G. Han, G. S. Kim, H. M. Kwon, and H. C. Lim. 2005. Effective Usage of Copper Fungicides for Environment friendly Control of Citrus Diseases. Res. Plant Dis. 11(2): 115-121. https://doi.org/10.5423/RPD.2005.11.2.115
  8. Jeffries, P., J. C. Dodd, M. J. Jeger, and R. A. Plumbley. 1990. The biology and control of Colletotrichum species on tropical fruit crops. Plant Pathology. 39(3): 343-366. https://doi.org/10.1111/j.1365-3059.1990.tb02512.x
  9. Kim, S. Y., J. W. Hyun, and Y. C. Jeun. 2011. Suppression effect and mechanism of citrus scab in the citrus pre-inoculated with rhizobacterial strains. Res. Plant Dis. 17(3): 302-310. https://doi.org/10.5423/RPD.2011.17.3.302
  10. Ko, E. J. 2019. Disease suppression by pre-treatment with bio-sulfur on cucumber leaves inoculated with Colletotrichumorbiculare. M.S. Thesis, Jeju National University Korea.
  11. Koh, Y. J., J. H. Song, H. M. Kwon, D. Y. Moon, D. K. Moon, and H. R. Han. 1996. Current status of the occurrence of mandarins in korea. Korea J. Plant Pathol. 12(4): 466-470.
  12. KREI. 2018. 2018 Agricultural outlook. Korea Economic Institute, Korea.
  13. Lee, J. G. 2018. Development of Soil Remedial Amendment Using the Bio-sulfur. M.S. Thesis, Kangwon National University Korea.
  14. Lee, K. H. 2019. Effect of Foliar Fertilization of Bio-Sulfur Suspension that was mixed with Calcium Chloride on Pepper Growth and Quality. M.S. Thesis, Jeju National University Korea.
  15. NAPQ. 2019. 2018 Certified statistics of organic agriculture etc. National Agricultural Products Quality, Korea.
  16. Oh, H. J., I. S. Seo, and S. C. Jin. 2005. Effects of agricultural chemicals on Elsinoe fawcettii of Citrus fruits. In Reports of IPM Technology Development, pp. 53-58
  17. Park, B., S. B. Lee, S. G. Lee, S. K. Park, I. H. Jeong, and I. S. Jun. 2016a. A case study on improvement of Pest control research in Rural Development Institutions and its implications. Korean J. Organic. Agric. 24(4): 609-625. https://doi.org/10.11625/KJOA.2016.24.4.609
  18. Park, J. S., M. A Song, and Y. C. Jeun. 2016b. Observation of growth inhibition of Elsinoe fawcettii on satsuma mandarin leaves pre-treated with rhizobacterial strains by a scanning electron microscope. Res. Plant Dis. 22(1): 1-8. https://doi.org/10.5423/RPD.2016.22.1.1
  19. Song, J. H. 1997. Current status of the occurrence of citrus diseases and etiological studies on citrus scab, sclerotinia twing blight and cottony rot, brown rot and sour rot. M.S. Thesis, Sunchon National University, Korea.
  20. Tian, S. P., Q. Fan, Y. Xu, and A. L. Jiang. 2002. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer. Plant Pathol. 51(3): 352-358. https://doi.org/10.1046/j.1365-3059.2002.00711.x
  21. Wisniewski, M., S. Droby, E. Chalutz, and Y. Eilam. 1995. Effects of $Ca^{2+}$ and $Mg^{2+}$ on Botrytis cinerea and Penicillium expansum in vitro and on the biocontrol activity of Candida oleophila. Plant Pathol. 44(6): 1016-1024. https://doi.org/10.1111/j.1365-3059.1995.tb02660.x