• Title/Summary/Keyword: circulation water

Search Result 1,206, Processing Time 0.04 seconds

Effect of Color Developing by Water Treatment on Cotton Fabrics Dyed with Persimmon Extract (감물염색 면직물의 물에 의한 발색 효과)

  • Kim, Ok soo;Jang, Jeong dae
    • Fashion & Textile Research Journal
    • /
    • v.19 no.5
    • /
    • pp.646-652
    • /
    • 2017
  • In order to clarify an availability of water treatment for persimmon extract dyeing, effect of color developing by water treatment process on cotton fabrics dyed with persimmon extract was investigated. Dyed fabrics were dipped still water and circulation water in various temperature. Concerning water color developing, still water color developing and circulation water color developing have been examined, and the temperature of water has been apprehended to prepare an effective basis of water color development. The surface color based on circulation water color development displays low values of $a^{\ast}$ and $b^{\ast}$, and the range of the c value(Munsell chroma) is narrow and has the value of 2 to 3, thus displays the coloration of a dark tone. The effect of temperature in water color development was insignificant, due to the small difference in temperature from $20^{\circ}C$ to $40^{\circ}C$. At $80^{\circ}C$, remarkable color development manifested, which is evidence of the high influence of temperature. The effects of circulation were clear at low temperatures, and the effects of temperature highly manifested at high temperatures. Circulation water color development display great color development at all temperatures to allow industrial color development with the absence of sunlight, thereby having an effect of energy reduction and developing color in dark tones, however this also is a strength of persimmon extract concerning color diversification, and is judged to have great value of industrial and practical application.

Design Methods and Capacity Analysis of Artificial Circulation Systems in Korean Reservoirs (우리 나라 저수지의 수중 폭기 장치의 설계 방법 및 용량 분석)

  • Seo, Dong-Il;Seog, Kwan-Soo;Lee, Byung-Doo;Jeong, Sang-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.366-376
    • /
    • 2004
  • Use of artificial circulation system has become popular in Korean reservoirs to control algal blooms and subsequent color, taste and odor problems in drinking water. It was found that the most of aeration system in Korean reservoirs are under-designed compared to existing installations in US and Australia. This was especially true for larger reservoirs greater than $5{\times}10^7m^3$ in volume since it is common to install the system in the vicinity of intake areas only. Consequently, successful cases of artificial circulation systems operations are limited to few small reservoirs less than $1{\times}10^7m^3$. It is suggested that the design methods need to be developed considering physical characteristics and water quality kinetics inside of reservoirs. Also operation methods of artificial circulation systems need to be established considering the water quality dynamics, stratification and morphological characteristics of reservoirs. Finally, it is suggested to maintain comprehensive and long term monitoring programs to validate the application of artificial circulation system in reservoirs.

Development of Agricultural Water Circulation Rate Considering Agricultural Reservoir and Irrigation District (농업용 저수지 및 관개지구를 고려한 농업유역 물순환율 개발)

  • Kim, Seokhyeon;Song, Jung-Hun;Hwang, Soonho;Kim, Hak-Gwan;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.83-95
    • /
    • 2020
  • The water circulation in agricultural watersheds changes with the operation of agricultural reservoirs, it is necessary to classify and evaluate them into upstream, agricultural reservoirs, irrigation districts, and downstream. Therefore, in this study, we developed the agricultural water circulation rate (AWCR) considering an agricultural reservoir and irrigation district by improving the water circulation rate of the Water environmental conservation Act. we applied it to Jinwi watershed using the module-based hydrologic analysis system to simulate the water circulation for agricultural reservoirs and irrigation areas. The model performance during the validation period was NSE of 0.762 for the downstream stream and 0.682 for the reservoir level. And the hydrograph separation model was applied to separate the direct and baseflow. As a result of this study, The AWCR of Jinwi watershed was 71.8% on average, which was higher than the water circulation rate estimated by the downstream hydrograph separation.

Hydraulic and Numerical Model Experiments of Circulation Water Intake for Boryeong Thermal Power Plant No. 7 and No. 8 (보령화력발전소 7·8호기 순환수 취수에 대한 수리 및 수치모형실험)

  • Yi, Yong-Kon;Cheong, Sang Hwa;Kim, Chang Wan;Kim, Jong Gang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.459-467
    • /
    • 2006
  • In this study, hydraulic and numerical model experiments were performed to analyze and improve the effects of flow-rate increase in the intake canal of Boryeong Thermal Power Plants on the flow condition in the circulation water pump (CWP) chambers. Based on the numerical simulation results, when the flow-rate increased in the circulation water intake canal, the velocity in the canal and vertical vorticities in the circulation water pump chambers increased and hence the vortex occurrence potential would be greatly increased. It was found by performing hydraulic model experiments that the velocity distribution near the bottom in the inlet of the circulation water pump chambers was highly non-uniform while the velocity distribution near the water surface was nearly uniform. To reduce the non-uniformity in the velocity distribution, triangular flow deflectors were devised. The installation of the flow deflectors in the inlet of circulation water pump chambers was successfully to reduce velocity non-uniformities and to remove flow reversal problems.

Abyssal Circulation Driven by a Periodic Impulsive Source in a Small Basin with Steep Bottom Slope with Implications to the East Sea

  • Seung, Young-Ho
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.287-296
    • /
    • 2012
  • In the theory of source-driven abyssal circulation, the forcing is usually assumed to be steady source (deep-water formation). In many cases, however, the deep-water formation occurs instantaneously and it is not clear whether the theory can be applied well in this case. An attempt is made to resolve this problem by using a simple reduced gravity model. The model basin has large depth change compared for its size, like the East Sea, such that isobaths nearly coincide with geostrophic contours. Deep-water is formed every year impulsively and flows into the model basin through the boundary. It is found that the circulation driven by the impulsive source is generally the same as that driven by a steady source except that the former has a seasonal fluctuation associated with unsteadiness of forcing. The magnitudes of both the annual average and seasonal fluctuations increase with the rate of deep-water formation. The problem can be approximated to that of linear diffusion of momentum with boundary flux, which well demonstrates the essential feature of abyssal circulation spun-up by periodic impulsive source. Although the model greatly idealizes the real situation, it suggests that abyssal circulation can be driven by a periodic impulsive source in the East Sea.

Natural Circulation Flow Investigation in a Rectangular Channel (사각 단면 채널에서의 자연순환 유동에 관한 연구)

  • Ha, Kwang-Soon;Kim, Jae-Cheol;Park, Rae-Joon;Kim, Sang-Baik;Hong, Seong-Wan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3086-3091
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled-down as the half height and 1/238 rectangular channel area of the APR1400 reactor vessel. As the water inlet area increased, the natural circulation mass flow rate asymptotically increased, that is, it converged at a specific value. And the circulation mass flow rate also increased as the outlet area, injected air flow rate, and outlet height increased. But the circulation mass flow rate was not changed along with the external water level variation if the water level was higher than the outlet height.

  • PDF

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.291-299
    • /
    • 2006
  • The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

  • PDF

Investigation into circulation of ground water by air sparging (Air sparging에 의한 지하수 순환에 관한 연구)

  • 이준희;강구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.232-235
    • /
    • 1998
  • Air sparging system is a kind of in-situ bioremediation method in the contaminated ground water. When Air sparging, the both of water circulation and oxygen transfer happend in the same time. The hydraulic differential head is zero at the middle height of well, is negative below the height and is possitive above the height. Hydroraulic head gradient is proportioned to air superficial velocity in the well. But over 24m/min of the superficial velocity, the hydraulic head gradient increase little.

  • PDF

A Study on Anti-Icing Technique for Ballast Water of Icebreaking Vessels Operating in Ice-Covered Water (극지운항용 빙해선박의 밸러스트 수 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Lee, Chun-Ju;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • When freezing is present on ballast water, it can impose additional loads on the hull and effect on stabilization of ship. The anti-icing techniques of ballast water, therefore, are key criteria for ship safety. The existing anti-icing techniques of ballast tank are hull heating, water circulation and air bubble system etc. In this research, anti-icing performance tests for the ballast water using micro-bubble system and sea water circulation system have been carried out at two temperature conditions($-10^{\circ}C$ and $-25^{\circ}C$). Ambient temperature, sea water temperature and temperature of the inner parts of the ballast tank are measured and also ballast water conditions are checked during the model test. The applied anti-icing techniques of ballast water, such as micro-bubble system and sea water circulation system show good performance in the low temperature conditions.

Research on flow characteristics in supercritical water natural circulation: Influence of heating power distribution

  • Ma, Dongliang;Zhou, Tao;Feng, Xiang;Huang, Yanping
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1079-1087
    • /
    • 2018
  • There are many parameters that affect the natural circulation flow, such as height difference, heating power size, pipe diameter, system pressure and inlet temperature and so on. In general analysis the heating power is often regarded as a uniform distribution. The ANSYS-CFX numerical analysis software was used to analyze the flow heat transfer of supercritical water under different heating power distribution conditions. The distribution types of uniform, power increasing, power decreasing and sine function are investigated. Through the analysis, it can be concluded that different power distribution has a great influence on the flow of natural circulation if the total power of heating is constant. It was found that the peak flow of supercritical water natural circulation is maximal when the distribution of heating power is monotonically decreasing, minimal when it is monotonically increasing, and moderate at uniform or the sine type of heating. The simulation results further reveal the supercritical water under different heat transfer conditions on its flow characteristics. It can provide certain theory reference and system design for passive residual heat removal system about supercritical water.