DOI QR코드

DOI QR Code

Hydraulic and Numerical Model Experiments of Circulation Water Intake for Boryeong Thermal Power Plant No. 7 and No. 8

보령화력발전소 7·8호기 순환수 취수에 대한 수리 및 수치모형실험

  • 이용곤 (한국수자원공사 수자원연구원) ;
  • 정상화 (한국건설기술연구원 수자원연구부) ;
  • 김창완 (한국건설기술연구원 수자원연구부) ;
  • 김종강 (한국전력기술(주) 토목기술처)
  • Received : 2005.10.04
  • Accepted : 2006.06.02
  • Published : 2006.09.30

Abstract

In this study, hydraulic and numerical model experiments were performed to analyze and improve the effects of flow-rate increase in the intake canal of Boryeong Thermal Power Plants on the flow condition in the circulation water pump (CWP) chambers. Based on the numerical simulation results, when the flow-rate increased in the circulation water intake canal, the velocity in the canal and vertical vorticities in the circulation water pump chambers increased and hence the vortex occurrence potential would be greatly increased. It was found by performing hydraulic model experiments that the velocity distribution near the bottom in the inlet of the circulation water pump chambers was highly non-uniform while the velocity distribution near the water surface was nearly uniform. To reduce the non-uniformity in the velocity distribution, triangular flow deflectors were devised. The installation of the flow deflectors in the inlet of circulation water pump chambers was successfully to reduce velocity non-uniformities and to remove flow reversal problems.

본 연구에서는 화력발전소 순환수취수로의 유량증가가 취수펌프장 흐름에 미치는 영향을 해석하고 개선하기 위하여 수리 및 수치모형실험을 수행하였다. 수치모형실험결과에 의하면 화력발전소 순환수취수로의 유량이 증가하면 취수로내의 유속과 순환수취수 펌프장의 연직방향와도가 증가하여 순환수취수 펌프장내의 와류발생가능성이 크게 증가하는 것을 알 수 있었다. 수리모형실험을 수행하여 순환수취수펌프장 유입부의 수면 근처 흐름은 거의 균등한 유량 배분이 이루어지고 반면에, 바닥 근처의 흐름은 유량 배분이 균등하게 이루어지지 못하여 취수펌프장내에서 역류현상이 발생하는 것을 밝혀냈다. 삼각형 도류벽을 취수펌프장 유입부에 설치하여 유속분포의 불균일성을 제거할 수 있었고 역류발생문제를 제거하였다.

Keywords

References

  1. 이용곤, 정상화, 김창완(2005) 순환수취수펌프장 내의 흐름에 대한 수리 및 수치모형실험. 한국수자원학회논문집, 한국수자원
  2. ASCE Task Force Committee on Hydraulic Modeling (2000) Hydraulic modeling concepts and practice, ASCE, Virginia
  3. Hecker, G.E. (1984) Scale effects in modeling vortices. Symposium on Scale Effects in Modeling Hydraulic Structures, International Association for Hydraulic Research
  4. Hydraulic Institute (1998) American national standard pump intake design (ANSE/HI 8-8-1998). Hydraulic Institute, New Jersey
  5. Prosser, M.J. (1977) The Hydraulic design of pump sumps and intakes. 1st ed., British Hydrodynamics Research Association, Cranfield, Bedford, England
  6. Sweeney, C.E., Elder, R.A., and Hay, D. (1982) Pump sump design experience: Summary. Journal of Hydraulic Division, Vol. 108, No. HY3. pp. 361-365
  7. Tullis, J.P. (1979) Modeling in design of pumping pits. Journal of the Hydraulic Division, Vol. 105, No. HY9, pp. 1053-1063
  8. US Army Corps of Engineers (1997) User guide to RMA2, Wex- Tech Systems, Inc. New York. 학회, 제38권 제8호, pp. 631-643