• Title/Summary/Keyword: circular tunnel

Search Result 215, Processing Time 0.021 seconds

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

Factor analysis of subgrade spring stiffness of circular tunnel

  • Xiangyu Guo;Liangjie Wang;Jun Wang;Junji An
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • This paper studied the subgrade spring stiffness and its influencing factors in the seismic deformation method of circular tunnel. Numerical calculations are performed for 3 influencing factors: stratum stiffness, tunnel diameter and burial depth. The results show that the stratum stiffness and tunnel diameter have great influence on the subgrade spring stiffness. The subgrade spring stiffness increases linearly with stratum stiffness increasement, and decreases with the tunnel diameter increasement. When the burial depth ratio (burial depth/tunnel diameter) exceeds to 5, the subgrade spring stiffness has little sensitivity to the burial depth. Then, a proposed formula of subgrade spring stiffness for the seismic deformation method of circular tunnel is proposed. Meanwhile, the internal force results of the seismic deformation method are larger than that of the dynamic time history method, but the internal force distributions of the two methods are consistent, that is, the structure exhibits elliptical deformation with the largest internal force at the conjugate 45° position of the circular tunnel. Therefore, the seismic deformation method based on the proposed formula can effectively reflect the deformation and internal force characteristics of the tunnel and has good applicability in engineering practice.

A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion

  • Ranjbarnia, Masoud;Rahimpour, Nima;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • In this study, a new analytical-numerical procedure is developed to give the stresses and strains around a circular tunnel in rock masses exhibiting different stress-strain behavior. The calculation starts from the tunnel wall and continues toward the unknown elastic-plastic boundary by a finite difference method in the annular discretized plastic zone. From the known stresses in the tunnel boundary, the strains are calculated using the elastic-plastic stiffness matrix in which three dimensional Hoek-Brown failure criterion (Jiang and Zhao 2015) and Mohr-Coulomb potential function with proper dilation angle (i.e., non-associated flow rule) are employed in terms of stress invariants. The illustrative examples give ground response curve and show correctness of the proposed approach. Finally, from the results of a great number of analyses, a simple relationship is presented to find out the closure of circular tunnel in terms of rock mass strength and tunnel depth. It can be valuable for the preliminary decision of tunnel support and for prediction of tunnel problems.

Resonance Characteristics for 2-Dimensional Circular Wind Tunnel (2차원 원형 풍동의 공진 특성)

  • Baik, Ki-Young;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1087-1095
    • /
    • 1990
  • A finite element method is used for analyzing the resonance characteristics of circular wind tunnel. Two-dimensional circular wind tunnel with one and three slots is considered. The wind tunnel resonance characteristics are affected by the number and position of the slots of the wind tunnel. The resonant frequencies for the vertical vibration mode are higher than those for the horizontal vibration mode. The resonance frequencies increase as the open area ratio increases.

Elasto-plastic Analysis of Circular Tunnel with Consideration of Strain-softening of GSI Index (GSI 지수의 변형률 연화를 고려한 원형터널의 탄소성 해석)

  • Lee, Youn-Kyou;Park, Kyung-Soon
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • For the elasto-plastic analysis of a circular tunnel driven in a strain-softening rock mass subjected to a hydrostatic in-situ stress condition, this study suggests a convenient elasto-plastic analysis scheme which takes the strain-softening of GSI index into account and demonstrates its potential as a numerical tool in designing a circular tunnel. The suggested numerical scheme was developed by modifying the previous elasto-plastic procedure proposed by Lee & Pietruszczak(2008). With the assumption that GSI index of rock mass adjacent to the tunnel surface may be degraded due to the damage caused by the blasting and excavation, the concept of the strain-softening of GSI index was invoked. The concept provides a useful tool considering the strain-softening of the strength parameters appearing in the generalized Hoek-Brown criterion because these parameters can be evaluated empirically by use of GSI. In order to check the validity of the proposed scheme, the elasto-plastic analyses for circular tunnels were performed in various analysis conditions and the results were discussed.

Effect of Strength Parameter a in the Generalized Hoek-Brown Failure Criterion and the Reinforcement Thickness on the Elasto-plastic Behavior of Circular Tunnel (일반화된 Hoek-Brown 파괴조건식의 강도정수 a와 터널 보강깊이가 원형터널의 탄소성 거동에 미치는 영향)

  • Lee, Youn-Kyou;Park, Kyung-Soon
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • In the design stage of a tunnel, the wall convergence is commonly estimated through an elasto-plastic analysis of the tunnel, which has been a topic drawing many researcher's attention so far. Despite its importance, however, the elasto-plastic behavior of a circular tunnel excavated in a generalized Hoek-Brown rockmass is still poorly understood. In this study, a simple munerical method based on Lee & Pietruszczak (2008) for the elasto-plastic analysis of a circular tunnel surrounded by reinforced annulus is proposed. It is assumed that the tunnel is excavated in a strain-softening rockmass obeying the generalized Hoek-Brown failure condition. The commercial code FLAC is used for the verification of the proposed method. The influence of the Hoek-Brown strength parameter a and the thickness of the reinforcement annulus on the elasto-plastic behavior around the tunnel was discussed by conducting some example analyses. The results show that the influence of these two parameters on the distribution of stresses and displacements is substantial.

Experimental Investigation For Various Propeller Tunnel Geometry Effect On Propulsion Performance (프로펠러 보호터널 형상이 추진성능에 미치는 영향에 대한 실험적 고찰)

  • Suh, Sung-Bu;Park, Choong-Hwan;Moon, Il-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.40-45
    • /
    • 2007
  • This study was performed to investigate the effect of various propeller tunnel shapes on the propulsion performance of a fishing boat. The propeller tunnel reduces the problem resulting from the open propeller accidentally catching the waste net and cable on the sea, as well as increasing the cruising speed. For 3 different tunnel geometries, the model test is conducted in the circular water channel, and the potential based panel method was applied to analyze the hydrodynamic characteristics of propeller. Also, both results are compared with each other to represent the difference between results of the model scale test and the potential theory. It is expected that these results could be referenced in the design of the propeller tunnel in consideration of the hydrodynamic interaction between the propeller and the tunnel.

Strain-Softening Behavior of Circular Tunnel Excavated in Mohr-Coulomb Rock Mass (Mohr-Coulomb 암반에 굴착된 원형 터널의 변형률연화 거동해석)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.495-505
    • /
    • 2006
  • Calculating the distribution of stresses and displacements around a circular tunnel excavated in infinite isotropic rock mass subjected to hydrostatic stress condition is one of the basic problems in rock engineering. While closed-form solutions for the distribution are known if rock masses are considered as elastic, perfectly plastic, or brittle-plastic media, a few numerically approximated solutions based on various simplifying assumptions have been reported for strain-softening rock mass. In this study, a simple numerical method is introduced for the analysis of strain-softening behavior of the circular tunnel in Mohr-Coulomb rock mass. The method can also applied to the analysis of the tunnel in brittle-plastic or perfectly plastic media. For the brittle-plastic case where closed-formsolution exists, the performance of the present method is verified by showing an excellent agreement between two solutions. In order to demonstrate the strain-softening behaviors predicted by the proposed method. a parameter study for a softening index is given and the construction of ground reaction curves is carried out. The importance of defining the characteristics of dilation in plastic analysis is discussed through analyzing the displacements near the surface of tunnel.

Design of the secondary tunnel lining using a ground-primary support-secondary lining interaction model

  • Chang, Seok-Bue;Seo, Seong-Ho;Lee, Sang-Duk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.109-114
    • /
    • 2003
  • It is the common practice to reinforce excessively the secondary tunnel lining due to the lack of rational insights into the ground loosening loads. The main load of the secondary lining for drained-type tunnels is the ground loosening. The main cause of the load for secondary tunnel lining is the deterioration of the primary support members such as shotcrete, steel ribs, and rockbolts. Accordingly, the development of the analysis model to consider the ground-primary supports-secondary lining interaction is very important for the rational design of the secondary tunnel lining. In this paper, the interaction is conceptually described by the simple mass-spring model and the load transfer from the primary supports to the ground and the secondary lining is showed by the characteristic curves including the secondary lining reaction curve for the theoretical solution of a circular tunnel. And also, the application of this model to numerical analysis is verified in order to review the potential tool for practical tunnel problems with the complex conditions like non-circular shaped tunnels, multi-layered ground, sequential excavation and so on.

  • PDF