Elasto-plastic Analysis of Circular Tunnel with Consideration of Strain-softening of GSI Index

GSI 지수의 변형률 연화를 고려한 원형터널의 탄소성 해석

  • 이연규 (군산대학교 해양건설공학과) ;
  • 박경순 (군산대학교 대학원 해양산업공학과)
  • Published : 2010.02.28

Abstract

For the elasto-plastic analysis of a circular tunnel driven in a strain-softening rock mass subjected to a hydrostatic in-situ stress condition, this study suggests a convenient elasto-plastic analysis scheme which takes the strain-softening of GSI index into account and demonstrates its potential as a numerical tool in designing a circular tunnel. The suggested numerical scheme was developed by modifying the previous elasto-plastic procedure proposed by Lee & Pietruszczak(2008). With the assumption that GSI index of rock mass adjacent to the tunnel surface may be degraded due to the damage caused by the blasting and excavation, the concept of the strain-softening of GSI index was invoked. The concept provides a useful tool considering the strain-softening of the strength parameters appearing in the generalized Hoek-Brown criterion because these parameters can be evaluated empirically by use of GSI. In order to check the validity of the proposed scheme, the elasto-plastic analyses for circular tunnels were performed in various analysis conditions and the results were discussed.

이 연구에서는 정수압 지압 조건의 암반에 굴착되는 원형 터널의 탄소성 거동 해석을 위해 GSI 지수의 변형률연화를 고려한 탄소성 해석법이 제안되었고, 그 적용성이 검토되었다. 제안된 수치해석법은 Lee & Pietruszczak(2008)의 탄소성 해석방법을 수정하여 개발되었다. 터널 주변 암반에서는 발파와 굴착에 의한 암반의 손상으로 GSI 지수의 저하가 야기될 수 있다는 가정 하에 GSI 지수의 변형률연화 개념을 도입하였다. 일반화된 Hoek-Brown 식의 강도정수들은 GSI 값을 이용하여 경험적으로 계산할 수 있으므로 GSI 지수의 변형률연화 개념을 도입함으로써 이 강도정수들의 변형률연화가 해석에 반영되도록 하였다. 제안된 방법의 적합성을 검토하기위하여 여러 해석조건에서 원형터널의 탄소성 해를 구하고 그 결과를 고찰하였다.

Keywords

References

  1. 이연규, 2006, Mohr-Coulomb 암반에 굴착된 원형 터널의 변형률연화 거동해석, 터널과 지하공간(한국암반공학회지), 제16권, 제6호, pp. 495-505.
  2. Barton, N., Lien, R. and Lunde, J., 1974, Engineering classification of rock masses for the design of tunnel support, Rock Mech., 6, pp. 183-236.
  3. Bieniawski, Z.T., 1976, Rock mass classification in rock engineering, Proc. of the Symp. on Exploration for Rock Eng., Cape Town, pp. 97-106.
  4. Carranza-Torres, C. and Fairhurst, C., 1999, The elastoplastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 36, pp. 777-809. https://doi.org/10.1016/S0148-9062(99)00047-9
  5. Carranza-Torres, C., 2004, Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 41, pp. 480-481. https://doi.org/10.1016/j.ijrmms.2003.12.014
  6. Cai, M., Kaiser, P.K., Uno, H., Tasaka. Y. and Minami, M., 2004, Estimation of rock mass strength and deformation modulus of jointed hard rock masses using the GSI system, Int. J. Rock Mech. Min. Sci., 41, pp. 3-19. https://doi.org/10.1016/S1365-1609(03)00025-X
  7. Cai, M. and Kaiser, P.K., 2006, Visualization of rock mass classification systems, Geotech. Geolog. Eng., 24, pp. 1089-1102. https://doi.org/10.1007/s10706-005-7464-x
  8. Cai, M., Kaiser, P.K., Tasaka. Y. and Minami, M., 2007, Determination of residual strength parameters of jointed rock masses using the GSI system, Int. J. Rock Mech. Min. Sci., 44, pp. 247-265. https://doi.org/10.1016/j.ijrmms.2006.07.005
  9. Hoek, E., 1994, Strength of rock and rock masses, ISRM News Journal, 2.2, pp. 4-16.
  10. Hoek, E., Kaiser, P.K. and Bawden, W.F., 1995, Support of underground excavation in hard rock, Rotterdam: Balkema.
  11. Hoek, E. and Brown, E.T., 1997, Practical estimates of rock mass strength, Int. J. Rock Mech. Min. Sci., 34, pp. 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  12. Hoek, E., Carranza-Torres, C. and Corkum, B., 2002, Hoek-Brown failure criterion-2002 edition, Proc. 5th North American Rock Mech. Sympo. 1, pp. 267-273.
  13. Lee, Y.K. and Pietruszczak, S., 2008, A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass, Tunnel. Under. Space Tech., 23, pp. 588-599. https://doi.org/10.1016/j.tust.2007.11.002
  14. Park, K.H., Tontavanich, B. and Lee, J.G., 2008, A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses, Tunnel. Under. Space Tech., 23, pp. 151-159. https://doi.org/10.1016/j.tust.2007.03.002
  15. Russo, G., Kalamaras, G.S. and Grasso, P., 1998, A discussion on the concepts of geomechanical classes behavior categories and technical classes for an underground project, Gallerie e Grandi Opere Sotterranee.
  16. Ribacchi, R., 2000, Mechanical tests on pervasively jointed rock material: insight into rock mass behaviour. Rock Mech. Rock Eng., 33, pp. 243-266. https://doi.org/10.1007/s006030070002
  17. Sun, J.S., Lu, W.B., Zhu, Q.H. and Chen, M., 2007, Elasto-plastic analysis of circular tunnels in jointed rock masses satisfy the Hoek-Brown failure criterion, J. China Univ. Min. Tech., 17.3, pp. 393-398. https://doi.org/10.1016/S1006-1266(07)60112-6
  18. Sharan, S.K., 2008, Analytical solutions for stresses and displacement around a circular opening in a generalized Hoek-Brown rock, Int. J. Rock Mech. Min. Sci., 45, pp. 78-85. https://doi.org/10.1016/j.ijrmms.2007.03.002