• Title/Summary/Keyword: circular steel column

Search Result 185, Processing Time 0.022 seconds

Ductility Evaluation of Circular Hollow Reinforced Concrete Columns with Internal Steel Tube (강관 보강 중공 R.C 기둥의 연성 평가 해석)

  • Han, Seung Ryong;Lim, Nam Hyoung;Kang, Young Jong;Lee, Gyu Sei
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In locations where the cost of concrete is relatively high or in situations where the weight of concrete members has to be kept to a minimum, it may be more economical to use hollow reinforced concrete vertic al members. Hollow reinforced concrete colun-ms with a low axial load, a moderate longitudinal steel percentage and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. Hollow reinforced concrete columns with a high axial load, a high longitudinal steel percentage, and a thin wall were found, however, to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner through the disintegration of the concrete in the compression zone. A design recommendation and example through the moment-curvature analysis program for curvature ductility are herein presented. A theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted, providing that the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed foi members with circular sections.

Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load (반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동)

  • Lee Jae-Hoon;Jung Chul-Ho;Ko Seong-Hyun;Son Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.111-124
    • /
    • 2004
  • This research is a part of a research program to verify the seismic performance of circular reinforced concrete bridge columns with respect to longitudinal steel connection details under cyclic lateral load. A total of 21 column specimens were constructed and tested. Main variables in this test program were longitudinal steel connection details(continuous, lap-spliced, and mechanically connected), confinement steel ratio, and axial force ratio, etc. The test results of the columns with different longitudinal steel connection details showed different failure mode, strength degradation, and seismic performance. From the quasi-static test, it was found that the columns with all longitudinal reinforcement lap-spliced showed significantly reduced ductility. However, seismic performance of the columns with half of longitudinal reinforcement lap-spliced showed limited ductility but much more ductile behaviour than the columns with all longitudinal reinforcement lap-spliced. It was also found that the seismic performance, failure mode and strength degradation of columns with mechanical connected longitudinal reinforcement were similar to those of columns with continuous longitudinal reinforcement.

Experimental Behavior of Circular Tube Members with 600MPa High-strength Steel (600MPa급 고강도 원형강관 부재의 성능 평가)

  • Lee, Eun-Taik;Cho, Jae-Young;Shim, Hyun-Ju;Kim, Jin-Ho
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • Recent advances of technology in materials science have made it easy to respond to user's needs on high performance steel in civil and building structures. The high-performance and high-strength steel are required for large scale structure and high-rise building to have high-strength, high fracture toughness and better weldability etc. Therefore development of 600MPa class steel for mega structure is necessary. high strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether inelastic behavior equivalent to that of conventional steels can be attained or not. This study researched the structural behavior of high strength circular tubes compression and under flexure. Three column tests and three flexural tests were carried out. The suitability of existing design formulae(KBC 2009) and the structural behavior were investigated through these columns and beams with various types.

Displacement Ductility of Circular RC Column According to the Spacing of Spirals (나선철근 간격에 따른 원형 RC 기둥의 변위연성도)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.71-82
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns (4.5 aspect ratio) were tested under cyclic lateral load with constant axial load. The selected test variables are longitudinal steel ratio (2.017%, 3.161%), transverse steel ratio, and axial load ratio (0, 0.07, 0.15). Volumetric ratio of spirals of all the columns is 0.335~0.894% in the plastic hinge region. It corresponds to 39.7~122.3% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The final objectives of this study are to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, steel fracture, etc. In this paper, describes mainly failure behavior, strength degradation behaviour, displacement ductility of circular reinforced concrete bridge columns with respect to test variables.

Estimation of the Local Load-Carrying Capacities of CFCT Column to H-Beam Connections by Yield Line Model -With regard to the Tensile side of Beam flange- (인장측 보플랜지의 항복선 모델을 이용한 CFCT기둥-H형강보 접합부의 국부내력평가)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.525-536
    • /
    • 1998
  • This paper is concerned with a theoretical study on the local load-carrying capacities of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections by yield line theory. In this paper, the three cases which are assumed the yield line are involved. The first model is a simplified yield line model. The second model is modified by x and kx factors. The last one is a Morita's model. The local load-carrying capacities of CFCT column to H-beam connections has been studied both experimentally and theoretically using the yield line theory. The purpose of this paper is to suggest the basic data for developing the non-diaphragm connection.

  • PDF

Seismic Performance Evaluation of Moderate Seismically Designed RC Bridge Piers with Confinement Steel Type (중저진 철근 콘크리트 교각의 횡방향 철근 배근 형태에 따른 내진성능 평가)

  • Park, Jong-Hyup;Kim, Hoon;Lee, Jae-Hoon;Chung, Young-Soo;Cho, Dae-Yeon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.194-199
    • /
    • 2001
  • Lap splice in plastic hinge region is inevitable because of due to constructional joint between footing and column. R/C Circular columns with lap-splice in plastic hinge region are widely used in Korean highway bridges. In addition, these columns which constructed before the seismic design code have a number of structural deficiencies. It is, however, believed that there are not many experimental research works for nonlinear behavior of these columns subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test. Existing reinforced concrete bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of lap spliced longitudinal steel, confinement steel type and confinement steel ratio far the seismic behavior of reinforced concrete bridge piers. Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility, energy absorption, strength degradation etc.

  • PDF

Buckling resistance of axially loaded square concrete-filled double steel tubular columns

  • Ci, Junchang;Ahmed, Mizan;Tran, Viet-Linh;Jia, Hong;Chen, Shicai;Nguyen, Tan N.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.689-706
    • /
    • 2022
  • Thin-walled square concrete-filled double steel tubular (CFDST) columns composed of the inner circular tube filled with concrete can be used to carry the large axial loads or strengthen existing CFST columns in composite constructions. This paper reports an experimental program carried out on short square CFDST columns loaded concentrically. The influences of important column parameters on the post-buckling performance of such columns are investigated. Test results exhibit that the inner circular tube significantly improves the ultimate loads and the ductility of such columns compared to conventional concrete-filled steel tubular (CFST) and double-skin CFST (DCFST) columns with an inner void. A mathematical model developed is used to simulate the ultimate strengths and load-strain curves of such columns loaded axially. Furthermore, the ultimate strengths of such columns are predicted using existing codified design models for conventional CFST columns as well as the formulas proposed by previous researchers and compared against a large database comprising 500 CFDST columns. Lastly, an accurate artificial neural network model is developed for the practical applications of such columns under axial loading.

Ultimate Compressive Strength of Concrete Filled Circular Stub Columns (CFCT 단주의 최대내력에 관한 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.233-240
    • /
    • 1999
  • It is well known that the ultimate compressive strength of concrete filled tubular stub-column is higher than that of the simplified evaluating value because of the confinement effect of infilled concrete. In this paper, It is compared the experimental results of other researchers with estimated ones by using the formulae. Finally, It is shown that the predicted equation is obtained by using the numerical analysis.

  • PDF

An approach for calculating the failure loads of unprotected concrete filled steel columns exposed to fire

  • Wang, Y.C.;Kodur, V.K.R.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.127-145
    • /
    • 1999
  • This paper deals with the development of an approach for evaluating the squash load and rigidity of unprotected concrete filled steel columns at elevated temperatures. The current approach of evaluating these properties is reviewed. It is shown that with a non-uniform temperature distribution, over the composite cross-section, the calculations for the squash load and rigidity are tedious in the current method. A simplified approach is proposed to evaluate the temperature distribution, squash load, and rigidity of composite columns. This approach is based on the model in Eurocode 4 and can conveniently be used to calculate the resistance to axial compression of a concrete filled steel column for any fire resistance time. The accuracy of the proposed approach is assessed by comparing the predicted strengths against the results of fire tests on concrete filled circular and square steel columns. The applicability of the proposed approach to a design situation is illustrated through a numerical example.

Experimental Study on Concrete Steel Circular Tubes Confined by Carbon Fiber Sheet under Axial Compression Loads (탄소섬유쉬트로 구속된 콘크리트충전 원형강관기둥의 단조압축실험)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup;Choi, Sung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.61-71
    • /
    • 2009
  • This paper presents the results of an experiment comparing the current circular CFT columns and circular CFT columns that were additionally confined by carbon fiber sheets (CFS) under axial loading. The main experimental parameters are the numbers of CFS layers and the diameter-to-thickness ratio. 10 specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, load-axial deformation curve, maximum axial strength, and deformation capacity of the CFT columns and confined CFT columns were compared. The test results showed that the maximum axial strengths of CFT columns additionally confined by CFS are increased higher than those of the current CFT columns, and that local buckling can be delayed due to the confinement effect of CFS.