• Title/Summary/Keyword: circuit switching

Search Result 1,980, Processing Time 0.026 seconds

Complementary Dual-Path Charge Pump with High Pumping Efficiency in Standard CMOS Logic Technology (상보형 전하이동 경로를 갖는 표준 CMOS 로직 공정용 고효율 전하펌프 회로)

  • Lee, Jung-Chan;Chung, Yeon-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.80-86
    • /
    • 2009
  • In this paper, we present a new charge pump circuit feasible for the implementation with standard twin-well CMOS process technology. The proposed charge pump employs PMOS-switching dual charge-transfer paths and a simple two-phase clock. Since charge transfer switches are fully turned on during each half of clock cycle, they transfer charges completely from the present stage to the next stage without suffering threshold voltage drop. During one clock cycle, the pump transfers charges twice through two pumping paths which are operating alternately. The performance comparison by simulations and measurements demonstrates that the proposed charge pump exhibits the higher output voltage, the larger output current and a better power efficiency over the traditional twin-well charge pumps.

Resynthesis of Logic Gates on Mapped Circuit for Low Power (저전력 기술 매핑을 위한 논리 게이트 재합성)

  • 김현상;조준동
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.1-10
    • /
    • 1998
  • The advent of deep submicron technologies in the age of portable electronic systems creates a moving target for CAB algorithms, which now need to reduce power as well as delay and area in the existing design methodology. This paper presents a resynthesis algorithm for logic decomposition on mapped circuits. The existing algorithm uses a Huffman encoding, but does not consider glitches and effects on logic depth. The proposed algorithm is to generalize the Huffman encoding algorithm to minimize the switching activity of non-critical subcircuits and to preserve a given logic depth. We show how to obtain a transition-optimum binary tree decomposition for AND tree with zero gate delay. The algorithm is tested using SIS (logic synthesizer) and Level-Map (LUT-based FPGA lower power technology mapper) and shows 58%, 8% reductions on power consumptions, respectively.

  • PDF

A Reconfigurable Spatial Moving Average Filter in Sampler-Based Discrete-Time Receiver (샘플러 기반의 수신기를 위한 재구성 가능한 이산시간 공간상 이동평균 필터)

  • Cho, Yong-Ho;Shin, Soo-Hwan;Kweon, Soon-Jae;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.169-177
    • /
    • 2012
  • A non-decimation second-order spatial moving average (SMA) discrete-time (DT) filter is proposed with reconfigurable null frequencies. The filter coefficients are changeable, and it can be controlled by switching sampling capacitors. So, interferers can be rejected effectively by flexible nulls. Since it operates without decimation, it does not change the sample rate and aliasing problem can be avoided. The filter is designed with variable weight of coefficients as $1:{\alpha}:1$ where ${\alpha}$ varies from 1 to 2. This corresponds to the change of null frequencies within the range of fs/3~fs/2 and fs/2~2fs/3. The proposed filter is implemented in the TSMC 0.18-${\mu}m$ CMOS process. Simulation shows that null frequencies are changeable in the range of 0.38~0.49fs and 0.51~0.62fs.

Fault Diagnosis of Voltage-Fed Inverters Using Pattern Recognition Techniques for Induction Motor Drive (패턴인식 기법을 이용한 유도전동기 구동용 전압형 인버터의 고장진단)

  • Park, Jang-Hwan;Park, Sung-Moo;Lee, Dae-Jong;Kim, Dong-Hwa;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.75-84
    • /
    • 2005
  • Since an unexpected fault of induction motor drive systems can cause serious troubles in many industrial applications, which the technique is required to diagnose faults of a voltage-fed PWM inverter for induction motor drives. The considered fault types are rectifier diodes, switching devices and input terminals with open-circuit faults, and the signal for diagnosis is derived from motor currents. The magnitude of dq-current trajectory is used for the feature extraction of a fault and PCA LDA are applied to diagnose. Also, we show results with respect to the execution time because of the possibility to use that a diagnosis software is embedded in the controllers of medium and small size induction motors drive for real-time diagnosis. After we performed various simulations for the fault diagnosis of the inverter, the usefulness of proposed algerian was verified.

High-Efficiency & Cost-Effective Multi-Output LLC Resonant Converter using Single Transformer (단일 변압기를 이용한 고효율.저가격형 다중출력 LLC 공진형 컨버터)

  • Cho, Sang-Ho;Yoon, Jong-Kyu;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.439-446
    • /
    • 2008
  • The medium power system for the recent electronic products that can perform the multi-function requires various multi-output, high-efficiency and low cost characteristics. To cope with these critical issues, a new high-efficiency and cost-effective multi-output LLC resonant converter is proposed in this paper. The proposed converter requires only 1 power switch instead of the bulky and expensive non-isolated DC/DC converter. Therefore, it features a simple structure, lower cost and high-efficiency. Especially, since the proposed converter can ensure the ZVS or ZCS of all power switches, it has very desirable advantages such as more improved EMI characteristics and reduced switching losses. Finally, to confirm the operation, validity, and features of the proposed circuit, experimental results from a SMPS prototype for 42" FHD PDP TV are presented.

Design and Implementation of Enhanced Resonant Converter for EV Fast Charger

  • Ahn, Suk-Ho;Gong, Ji-Woong;Jang, Sung-Roc;Ryoo, Hong-Je;Kim, Duk-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.143-153
    • /
    • 2014
  • This paper presents a novel application of LCC resonant converter for 60kW EV fast charger and describes development of the high efficiency 60kW EV fast charger. The proposed converter has the advantage of improving the system efficiency especially at the rated load condition because it can reduce the conduction loss by improving the resonance current shape as well as the switching loss by increasing lossless snubber capacitance. Additionally, the simple gate driver circuit suitable for proposed topology is designed. Distinctive features of the proposed converter were analyzed depending on the operation modes and detail design procedure of the 10kW EV fast charger converter module using proposed converter topology were described. The proposed converter and the gate driver were identified through PSpice simulation. The 60kW EV fast charger which generates output voltage ranges from 50V to 500V and maximum 150A of output currents using six parallel operated 10kW converter modules were designed and implemented. Using 60kW fast charger, the charging experiments for three types of high-capacity batteries were performed which have a different charging voltage and current. From the simulation and experimental results, it is verified that the proposed converter topology can be effectively used as main converter topology for EV fast charger.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

A Solar Cell based Power Production and Supply Complying with the Active and Sleep Modes of Sensor MAC Protocols (솔라셀 작동 모드와 센서 MAC 프로토콜의 Active 및 Sleep 모드를 고려한 전력 생산 및 공급 제어)

  • Lee, Seung-Yong;Lee, Woong;Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.423-432
    • /
    • 2012
  • We design a control circuit that can switch input power between a rechargeable battery and a sensor communication device (mote) depending on the operating state of a solar cell as well as the active and sleep mode of a sensor MAC protocol. A mote that simply combines a solarcell and a rechargeable battery may die if there is not sunlight long. A battery is recharged if sunlight is sufficient and a device is in a sleep mode, and it supplies power if sunlight is low and the mote is in an active mode. A mote can switch its input power between solar cell and battery depending on the output level of a solar cell. During this switching, a mote may lose its state information due to the reset of a microprocessor by the transient power-off. A capacitor is used to cope with this phenomenon and also supplies power to a mote during a sleep mode. Experimental results show that the solar cell based mote operates in a very stable manner against the lack of sunlight long.

Design of Multichannel Telemetering IC for Physiological Signals (생체 신호처리를 위한 다채널 텔레미터용 IC 설계)

  • Park, Jong-Dae;Seo, Hee-Don;Choi, Se-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.147-154
    • /
    • 1992
  • This paper describes the design of implantable 8-channel telemetering system to get physiological signals. The internal circuits of this system are designed not only to achieve as small size and low power dissipation as possible, but also to enable continuous measurement of physiological signals. Its main functions are to enable continuous measurement of physiological signals and to accomplish on-off power switching of an implantable battery by receiving appropriate command signals from an external circuit. To integrate implantable biotelemetry system, we performed layout of internal system using Lambda based $2{\mu}m$ n-well design rules. This system, used together with appropriate sensors, is expected to be capable of measuring and transmitting such significant parameters as pressure, pH, and temperature.

  • PDF

Evaluation of Flexible Complementary Inverters Based on Pentacene and IGZO Thin Film Transistors

  • Kim, D.I.;Hwang, B.U.;Jeon, H.S.;Bae, B.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.154-154
    • /
    • 2012
  • Flexible complementary inverters based on thin-film transistors (TFTs) are important because they have low power consumption and high voltage gain compared to single type circuits. We have manufactured flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The circuits were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. The characteristics of TFTs and inverters were evaluated at different bending radii. The applied strain led to change in voltage transfer characteristics of complementary inverters as well as source-drain saturation current, field effect mobility and threshold voltage of TFTs. The switching threshold voltage of fabricated inverters was decreased with increasing bending radius, which is related to change in parameters of TFTs. Throughout the bending experiments, relationship between circuit performance and TFT characteristics under mechanical deformation could be elucidated.

  • PDF