• Title/Summary/Keyword: chungkookjang

Search Result 81, Processing Time 0.024 seconds

STUDIES ON ENHANCING CHEMOPREVENTIVE EFFECT OF CHUNGKOOKJANGS 1. ENHANCED ANTIMUTAGENIC ACTIVITY OF CHUNGKOOKJANGS PREPARED WITH THE DIFFERENT VARIETY OF SOYBEAN AND STARTER

  • Park, Kun-Young;Kwon, Eun-Young;Jung, Keun-Ok
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.99-99
    • /
    • 2001
  • Antimutagenic effect of chungkookjangs prepared with the different variety of soybean and starter were studied against aflatoxin B$_1$ (AFB1) using Ames test and Ν-methyl-Ν'-nitro-Ν- nitrosoguanidine (MNNG) using SOS chromotest. Chungkookjang samples exerted the different antimutagenicity according to the prepared variety of soybeans in the Ames test using Salmonella typhimurium TA100. The chungkookjang manufactured with var.(omitted)

  • PDF

Levan-Producing Bacillus subtilis BS 62 and Its Phylogeny Based on Its 16S rDNA Sequence

  • Choi, Seong-Hyun;Chang, Sung;Choi, Woo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.428-434
    • /
    • 2001
  • A viscous substance producer strain BS62, which was isolated from conventional Chungkookjang, was examined for its productivity of levansucrase and levan during soybean fermentation at $37{\circ}C$. After one day of cultivation, the enzyme activity reached the highest level, 8 units $ml^{-1}$. Extracts of fermented soybeans were precipitated by ethanol and hydrolyzed by either 0.1 N HCl or invertase, and the hydrolyzates were analyzed using thin layer and ion chromatographies. Fructose was the only sugar detected. This suggest that fructose was derived from the levan produced by the strain BS62 during soybean fermentation. The aerobic, endospore-forming bacterium BS62 was identified as a Bacillus subtilis sp., based on the composition of its cellular fatty acids and phylogeny, which was determined by its 16S rDNA sequence.

  • PDF

Inhibitory Effect of Korean Fermented Soybean (Chungkookjang) Extract and Genistein Against Trp-P-1 Induced Genotoxicity in HepG2 Cells

  • Song, Eun Jeong;Kim, Nam Yee;Heo, Moon Young
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.171-178
    • /
    • 2017
  • This study evaluated the protective effect of Chungkookjang (CKJ) extract, a Korean traditional fermented soybean product made from Bacillus species in rice straw and boiled soybean, and one of its main flavonoids, genistein, against Trp-P-1 induced cytotoxicity and DNA damage in HepG2 cells. CKJ and genistein exhibited protective effect against Trp-P-1 induced cytotoxicity and Trp-P-1 induced DNA single strand breaks. CKJ and genistein inhibited Trp-P-1 induced CYP1A1 and CYP1A2 transcription in HepG2 cells. Our results indicated that CKJ and genistein have the protective effect against Trp-P-1 induced cytotoxicity and DNA damage. Via inhibiting expression of CYP1A1 and CYP1A2. CKJ can be used as a promising functional food material that prevents the genotoxicity induced by carcinogens produced by the heat treatment of foods such as heterocyclic amines (HCAs) that cause genomic instability.

Characterization and Production of Antibiotic by Bacillus subtilis 028-1, a Chungkookjang Fermenting Strain (청국장 발효 균주인 Bacillus subtilis 028-1의 항생물질 생산과 특성)

  • Ahn, Kyung-Joon
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.185-192
    • /
    • 2009
  • Chungkookjang fermenting Bacillus subtilis 028-1 strain suppressed the growth of Staphylococcus sp. LS2, Saccharomyces cerevisiae, and Candida albicans. B. subtilis 028-1 strain produced antibiotic effectively in the medium of 2% soybean meal and 1% maltose as a disaccharide, when the shaking was continued 15~18 h and the pH of culture medium was maintained under 6.5. The antibiotic activity was optimized when the initial pH of the culture medium of test strain was adjusted with weak alkali, was remained after 20 min of boiling and for more than 1 month in room temperature, and was weakened slowly by the digestion of chymotrypsin and papain. The molecular weight of the antibiotic was identified between 500 and 1,000 dalton by dialysis, and antibiotic substance was considered as not surfactin but a member of iturin family because of the absence of fibrinolytic activity.

Purification and Characterization of the Fibrinolytic Enzyme Produced by Bacillus subtilis KCK-7 from Chungkookjang

  • Paik, Hyun-Dong;Lee, Si-Kyung;Heo, Seok;Kim, Soo-Young;Lee, Hyung-Hoan;Kwon, Tae-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.829-835
    • /
    • 2004
  • A fibrinolytic enzyme has been found in several bacteria isolated from fermented food. This study was carried out to investigate the purification and characteristics of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 originated from Chungkookjang. The fibrinolytic enzyme was purified to homogeneity from the culture supernatant using ammonium sulfate fractionation and chromatographies on DEAE-cellulose and on Sephadex G-100. The final specific activity of the purified enzyme increased 11.0-fold, and the protein amount in the purified enzyme was about 16% of that in the culture supernatant. The molecular weight of the purified enzyme was estimated to be about 45,000 by SDS-PAGE. The optimum pH and temperature for the enzyme activity were pH 7.0 and $60^{\circ}C$, respectively. The enzyme activity was relatively stable up to $60^{\circ}C$ over the pH range of 7.0-10.0. The fibrinolytic enzyme activity increased by $Ca^{2+}$ and $Cu^{2+}$, whereas it was inhibited by $Hg^{2+}$ and $Ba^{2+}$. In addition, it was severely inhibited by PMSF and DFT. It is suggested that the purified enzyme was a serine protease for the fibrinolysis. The purified enzyme could completely hydrolyze fibrin in vitro within 8 h. Hence, it is suggested that the purified enzyme can be put into practice as an effective thrombolytic agent.

Isolation and Identification of Fibrinolytic Bacteria from Korean Traditional Chungkookjang (전통식품(청국장)으로 부터 fibrin용해 세균의 분리 동정)

  • Heo, Seok;Joo, Hyun-Kyu;Lee, Si-Kyung
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.119-124
    • /
    • 1998
  • In this study, the bacteria which could hydrolyze the fibrin produced through the blood coagulation mechanism in the human body, were isolated from Chungkookjang. The KCK-7 strain was selected among the isolated bacteria as the best strain for fibrinolytic activity. It was spore forming and Gram positive. $C_{150}$ anteiso fatty acid and $C_{150}$ iso fatty acid were 40.85% and 19.47%, respectively as major component among its cellular fatty acid composition. It showed the similarity of 63.6%, compared with standard strain. It was thus identified to be Bacillus subtilis according to Bergey's manual of systematic bacteriology and its fatty acid profiles af Gas chromatography. The optimum culture temperature and pH were $37^{\circ}C$ and 8 for the production of fibrinolytic enzyme by Bacillus subtilis KCK-7.

  • PDF

Protective Effects of Chungkookjang Extract on High Glucose Induced Oxidative Stress in LLC-PK1 Cells

  • Yi, Na-Ri;Seo, Kyoung-Chun;Choi, Ji-Myung;Cho, Eun-Ju;Song, Young-Ok;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.84-89
    • /
    • 2008
  • This study was designed to investigate the protective effect of a methanol extract of Chungkookjang (CKJ) on high glucose induced oxidative stress in LLC-$PK_1$ cells (renal tubular epithelial cells), which are susceptible to oxidative stress. Freeze dried CKJ powder was extracted with methanol, and the extract solution was concentrated, and then used in this study. To determine the protective effect of CKJ extract, oxidative stress was induced by exposing of LLC-$PK_1$ cells to high glucose (30 mM) or normal glucose (5 mM) for 24 hr. Exposure of LLC-$PK_1$ cells to high glucose for 24 hr resulted in a significant (p<0.05) decrease in cell viability, catalase, SOD and GSH-px activity and a significant (p<0.05) increase in intracellular ROS level and thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5 mM glucose. CKJ extract treatment decreased intracellular ROS level and TBARS formation, and increased cell viability and activities of antioxidant enzymes including catalase, SOD and GSH-px in high glucose pretreated LLC-$PK_1$ cells. These results suggest that CKJ extract may be able to protect LLC-$PK_1$ cells from high glucose-induced oxidative stress, partially through the antioxidative defense systems.

Protective Effect of Genistein and Korean Fermented Soybean (Chungkookjang) Extract against Benzo(a)pyrene Induced DNA Damage in HepG2 Cells (Benzo(a)pyrene 유도 DNA 손상에 대한 Genistein과 청국장추출물의 보호효과)

  • Song, Eun-Jeong;Kim, Hyun-Pyo;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.376-383
    • /
    • 2008
  • Chungkookjang (CKJ) is a fermented soybean product and one of favorite traditional foods in Korea. In this study, the alcoholic extract from Korean fermented soybean (CKJ) and its one of major flavonoids, genistein were evaluated for their protective effect against B(a)P induced cytotoxicity and DNA damage in HepG2 cells. CKJ extract and genistein decreased B(a)P-induced cell cytotoxicity. CKJ extract inhibited DNA single strand breaks evaluated by single cell gel electrophoresis. From RT-PCR study, it was revealed that CKJ extract decrease DNA damage induced in HepG2 cells expressing CYP1A1 and 1A2 by B(a)P. The metabolizing activities of CYP1A1 and CYP1A2, as measured by the 7-alkoxy resorufin O-deethylation (AROD) assay, showed that CKJ extract and genistein inhibited CYP1A1 and CYP1A2 activities. Genistein may contribute to these biological effects of CKJ extract at least in part. All these results indicate that CKJ extract and genistein may be useful for protection against B(a)P-induced cytotoxicity and DNA damage. Therefore, the alcoholic extract of Korean fermented soybean (CKJ) is suggested to be promising functional food which can prevent the cellular genotoxicity of dietary and lifestyle related carcinogens.