Browse > Article
http://dx.doi.org/10.13103/JFHS.2017.32.3.171

Inhibitory Effect of Korean Fermented Soybean (Chungkookjang) Extract and Genistein Against Trp-P-1 Induced Genotoxicity in HepG2 Cells  

Song, Eun Jeong (College of Pharmacy Kangwon National University)
Kim, Nam Yee (College of Pharmacy Kangwon National University)
Heo, Moon Young (College of Pharmacy Kangwon National University)
Publication Information
Journal of Food Hygiene and Safety / v.32, no.3, 2017 , pp. 171-178 More about this Journal
Abstract
This study evaluated the protective effect of Chungkookjang (CKJ) extract, a Korean traditional fermented soybean product made from Bacillus species in rice straw and boiled soybean, and one of its main flavonoids, genistein, against Trp-P-1 induced cytotoxicity and DNA damage in HepG2 cells. CKJ and genistein exhibited protective effect against Trp-P-1 induced cytotoxicity and Trp-P-1 induced DNA single strand breaks. CKJ and genistein inhibited Trp-P-1 induced CYP1A1 and CYP1A2 transcription in HepG2 cells. Our results indicated that CKJ and genistein have the protective effect against Trp-P-1 induced cytotoxicity and DNA damage. Via inhibiting expression of CYP1A1 and CYP1A2. CKJ can be used as a promising functional food material that prevents the genotoxicity induced by carcinogens produced by the heat treatment of foods such as heterocyclic amines (HCAs) that cause genomic instability.
Keywords
Chungkookjang (Korean fermented soybean); Trp-P-1; HepG2 cells; Cytotoxicity; DNA damage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schwarz, D., Kisselev, P., and Roots, I.: CYP1A1 genotype-selective inhibition of benzo[a]pyrene activation by quercetin. Eur. J. Cancer, 41, 151-158 (2005).   DOI
2 Kanazawa, K., Yamashita, T., Ashida, H., and Danno, G.: Antimutagenicity of flavones and flavonols to heterocyclic amines by specific and strong inhibition of the cytochrome P450 1A family. Biosci. Biotechnol Biochem., 62, 970-977 (1998).   DOI
3 Shertzer, H.G., Puga, A., Chang, C., Smith, P., Nebert, D.W., Setchell, K.D., and Dalton, T.P.: Inhibition of CYP1A1 enzyme activity in mouse hepatoma cell culture by soybean isoflavones. Chem. Biol. Interact., 123, 31-49 (1999).   DOI
4 Steiner, C., Peters, W.H., Gallagher, E.P., Magee, P., Rowland, I., and Pool-Zobel, B.L.: Genistein protects human mammary epithelial cells from benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide and 4-hydroxy-2-nonenal genotoxicity by modulating the glutathione/glutathione S-transferase system. Carcinogenesis, 28, 738-748 (2007).
5 Park, K.Y., Jung, K.O., Rhee, S.H., and Choi, Y.H.: Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mutat. Res., 523-524, 43-53 (2003).   DOI
6 Miyazawa, M., Sakano, K., Nakamura, S., and Kosaka, H.: Antimutagenic activity of isoflavones from soybean seeds (Glycine max merrill). J. Agric. Food Chem., 47, 1346-1349 (1999).   DOI
7 Itaglione, P., and Fogliano, V.: Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 802, 189-199 (2004).   DOI
8 Kim N.Y., Song, E.J., Kwon, D.Y., Kim H.P., and Heo, M.Y.: Antioxidant and antigenotoxic activities of Korean fermented soybean, Food Chem. Tox., 46, 1184-1189(2008).   DOI
9 Cheng, K.W., Chen, F., and Wang, M.: Heterocyclic amines: chemistry and health. Mol. Nutr. Food Res., 50, 1150-1170 (2006).   DOI
10 Layton, D.W., Bogen, K.T., Knize, M.G., Hatch, F.T., Johnson, V.M., and Felton, J.S.: Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis (Lond.), 16, 39-52 (1995).   DOI
11 Goldman R., and Shields P.G.: Food mutagens. J. Nutr., 133, Suppl. 3, 965S-973S (2003).   DOI
12 IARC: Monographs on the Evaluation of Carcinogenic Risks to Humans. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Lyon, France: IARC (1993).
13 Oguri, A., Suda, M., Totsuka, Y., Sugimura, T., and Wakabayashi, K.: Inhibitory effects of antioxidants on formation of heterocyclic amines. Mutat. Res., 402, 237-245 (1998).   DOI
14 Majer, B.J., Mersch-Sundermann, V., Darroudi, F., Laky, B., de Wit, K., and Knasmuller, S.: Genotoxic effects of dietary and lifestyle related carcinogens in human derived hepatoma (HepG2, Hep3B) cells. Mutat. Res., 13, 551, 153-166 (2004).
15 Baird, W.M., Hooven, L.A., and Mahadevan, B.: Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen., 45, 106-114 (2005).   DOI
16 Ryu, S.H.: Studies on antioxidative effects antioxidative components of soybean and Chongkukjang. Ph..D. thesis, Inje Univ. (2004).
17 Cole, S.P.: Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol., 17, 259-263 (1986).
18 Hammons, G.J., Fletcher, J.V., Stepps, K.R., Smith, E.A., Balentine, D.A., Harbowy, M.E., and Kadlubar, F.F.: Effects of chemoprotective agents on the metabolic activation of the carcinoge.nic arylamines PhIP and 4-aminobiphenyl in human and rat liver microsomes. Nutr. Cancer, 33, 46-52 (1999).   DOI
19 Huber, W.W., McDaniel, L.P., Kaderlik, K.R., Teitel, C.H., Lang, N.P., and Kadlubar, F.F.: Chemoprotection against the formation of colon DNA adducts from the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the rat. Mutat. Res., 376, 115-122 (1997).   DOI
20 Tsuda, H., Uehara, N., Iwahori, Y., Asamoto, M., Iigo, M., Nagao, M., Matsumoto, K., Ito M., and Hirono I.: Chemopreventive effects of ${\beta}$-carotene, ${\alpha}$-tocopherol and five naturally occurring antioxidants on initiation of hepatocarcinogenesis by 2-amino-3-methylimidazo[4,5-f]quinoline in the rat. Jpn. J. Cancer Res., 85, 1214-219 (1994).   DOI
21 Olive, P.L., Durand, R.E., Banath, J.P., and Johnston, P.J.: Analysis of DNA damage in individual cells. Methods Cell Biol., 64, 235-149 (2001).
22 Sing, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L.: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 175, 184-191 (1988).   DOI
23 Olive, P.L., Banath, R.E., and Durand, R.E.: Heterogenecity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat. Res., 122, 86-94 (1990).   DOI
24 Olive, P.L.: The comet assay. An overview of techniques. Methods Mol. Biol.. 203, 179-194 (2002).
25 Yang, S.P., and Raner, G.M.: Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract. Toxicol. Appl. Pharmacol., 202, 140-150 (2005).   DOI
26 Skog, K.I., Johansson, M.A., and Jagerstad, M.I.: Carcinogenic heterocyclic amines in model systems and cooked foods: a review on formation, occurrence and intake. Food Chem. Toxicol., 36, 879-896 (1998).   DOI
27 Keating, G.A., Layton, D.W., and Felton, J.S.: Factors determining dietary intakes of heterocyclic amines in cooked foods. Mutat. Res., 443, 149-56 (1999).   DOI
28 Knize, M.G., Salmon, C.P., Pais, P., and Felton, J.S.: Food heating and the formation of heterocyclic aromatic amine and polycyclic aromatic hydrocarbon mutagens/carcinogens. Adv. Exp. Med. Biol., 459, 179-193 (1999).
29 Butler, M.A., Guengerich, F.P., and Kadlubar, F.F.: Metabolic oxidation of the carcinogens 4-aminobiphenyl and 4,4'-methylene-bis(2-chloroaniline) by human hepatic microsomes and by purified rat hepatic cytochrome P-450 monooxygenases. Cancer Res., 49, 25-31 (1989).
30 Trakoontivakorn, G., Nakahara, K., Shinomoto, H., Takenaka, M., Onishi-Kameyama, M., Ono, H., Yoshida, M., Nagata T., and Tsushida, T.: Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J. Agric. Food Chem., 49, 3046-3050 (2001).   DOI
31 Anderson, D., Dobrzynska, M.M., Basaran, N., Basaran, A., and Yu, T.-W.: Flavonoids modulate comet assay responses to food mutagens in human lymphocytes and sperm. Mutat. Res., 402, 269-277 (1998).   DOI
32 Anderson, D., Basaran, N., Dobrzynska, M.M., Basaran, A.A., and Yu, T.-W.: Modulating effects of flavonoids on food mutagens in human blood and sperm samples in the comet assay. Teratogen. Carcinogen. Mutagen., 17, 45-58 (1997).   DOI
33 Navajas, C., Poso, A., and Gynther, J., CoMFA of flavonoids with antimutagenic activity against 2-amino-3-methylimidazo[ 4,5-f]quinoline (IQ). Electron. J. Theor. Chem., 1, 45-51 (1996).
34 Crofts, F.G., Sutter, T.R., and Strickland, P.T.: Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cytochrome P4501A1, P4501A2 and P4501B1. Carcinogenesis, 19, 1969-1973 (1998).   DOI
35 King, R.S., Kadlubar, F.F., and Turesky, R.J.: In vivo metabolism of heterocyclic aromatic amines. In: Heterocyclic Amines: Food Borne Carcinogens (eds., Nagao, M., and Sugimura, T.), John Wiley & Sons, Ltd., Chichester Sussex, England, pp. 90-111 (2000).
36 Xu, M., Schut, H.A.J., Bjeldanes, L.F., Williams, D.E., Bailey, G.S., and Dashwood, R.H.: Inhibition of 2-amino-3-methylimidazo[4,5-f]quinoline-DNA adducts by indole-3-carbinol: dose-response studies in the rat colon. Carcinogenesis, 18, 2149-2153 (1997).   DOI
37 Dashwood, R.H.: Modulation of heterocyclic amine-induced mutagenicity and carcinogenicity: an 'A-to-Z' guide to chemopreventive agents, promoters, and transgenic models. Mutat. Res., 511, 89-112 (2002).   DOI
38 Sinha, R, Rothman, N., Brown, E.D., Mark, S.D., Hoover, R.N., Caporaso, N.E., Levander, O.A., Knize, M.G., Lang, N.P., and Kadlubar, F.F.: Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res., 54, 6154-6159 (1994).
39 Nagao, M.: A new approach to risk estimation of food-borne carcinogens-heterocyclic amines-based on molecular information. Mutat. Res., 431, 3-12 (1999).   DOI
40 Felton, J.S., Knize, M.G., Wu, R.W., Colvin, M.E., Hatch, F.T., and Malfatti MA.: Mutagenic potency of food-derived heterocyclic amines. Mutat. Res., 616, 90-94 (2007).   DOI
41 Edenharder, R., von Petersdorff, I., and Rauscher, R.: Antimutagenic effects of flavonoids, chalcones and structurally related compounds on the activity of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and other heterocyclic amine mutagens from cooked food. Mutat. Res., 287, 261-274 (1993).   DOI
42 Hernaez, J., Xu, M., and Dashwood, R.H.: Effects of tea and chlorophyllin on the mutagenicity of N-hydroxy-IQ: studies of enzyme inhibition, molecular complex formation, and degradation/scavenging of the active metabolites. Environ. Mol. Mutagen., 30, 468-474 (1997).   DOI
43 He, Y.H., Smale, M.H., and Schut, H.A.: Chemopreventive properties of indole-3-carbinol (I3C): inhibition of DNA adduct formation of the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), in female F344 rats. J. Cell. Biochem. Suppl., 27, 42-51 (1997).
44 Guo, D., Schut, H.A.J., Davis, C.D., Snyderwine, E.G., Bailey, G.S., and Dashwood, R.H.: Protection by chlorophyllin and indole-3-carbinol against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis, 16, 2931-2937 (1995).   DOI
45 Schut, H.A., and Dashwood, R.H.: Inhibition of DNA adduct formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by dietary indole-3- carbinol (I3C) in the mammary gland, colon, and liver of the female F344 rat. Ann. New York Acad. Sci., 768, 210-214 (1995).   DOI
46 Kim, J.I., Kang, M.J., and Kwon, T.W.: Antidiabetic Effect of Soybean and Chongkukjang. Korea Soybean Society, 20, 44-53 (2003).
47 Kim, S.H., Yang, J.L., and Song, Y.S., Physiological Functions of Chongkukjang. Food Industry and Nutr. 4, 40-46 (1999).
48 Cho, Y.J., Ch, W.S., Bok, S.K., Kim, M.U., Chun, C.S., and Choi, U.K.: Production and Separation of Anti-hypertensive Peptide during Chunggugjang Fermentation with Bacillus subtilis CH-1023. J. Korean Soc. Appl. Biol. Chem., 43, 247-253 (2000).
49 Kim, Y., Cho, J.Y., Kuk, J.H., Moon, J.H., Cho, J.I., Kim, Y.C., and Park, K.H.: Identification and antimicrobial activity of phenylacetic acid produced by Bacillus l icheniformis isolated from fermented soybean, Chungkook-Jang. Curr. Microbiol., 48, 312-317 (2004).   DOI
50 Kang, S.M., Lee, C.S., Yoo, C.K., and Seo, W.S.: Purification and characterization of fibrinolytic enzyme excreted by Bacillus subtilis K-54 isolated from ChungGukJang. Kor. J. Appl. Microbiol. Biotechnol., 26, 507-515 (1998).
51 Yang, J.L., Lee, S.H., and Song, Y.S.: Improving effect of powders of cooked soybean and chongkukjang on blood pressure and lipid metabolism in spontaneously hypertensive rats. Kor. J. Food Nutr., 32, 899-906 (2003).   DOI
52 Anthony, M.S., Clarkson, T.B., and Williams, J.K.: Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am. J. Clin. Nutr., 68, Suppl. 1390S-1393S (1998).   DOI
53 Barnes, S., Sfakianos, J., Coward, L., and Kirk, M.: Soy isoflavonoids and cancer prevention. Underlying biochemical and pharmacological issues. Adv. Exp. Med. Biol., 401, 87-100 (1996).
54 Song, E.J., Kim, H.P., and Heo, M.Y.: Protective effect of genistein and Korean fermented soybean (Chungkookjang) extract against benzo(a)pyrene induced DNA damage in HepG2 cells. Yakhak Hoeji, 52, 376-383 (2008).
55 Lautraite, S., Musonda, A.C., Doehmer, J., Edwards, G.O., and Chipman, J.K.: Flavonoids inhibit genetic toxicity produced by carcinogens in cells expressing CYP1A2 and CYP1A1. Mutagenesis, 17, 45-53 (2002).   DOI
56 Kang, Z.C., Tsai, S.J., and Lee, H.: Quercetin inhibits benzo [a]pyrene-induced DNA adducts in human Hep G2 cells by altering cytochrome P-450 1A1 gene expression. Nutr. Cancer, 35, 175-179 (1999).   DOI