• Title/Summary/Keyword: chlorophyll protein

Search Result 247, Processing Time 0.029 seconds

FACTORS INVOLVED IN THE QUALITY RETENTION OF CULTURED UNDARIA PINNATIFIDA (양식미역의 품질요인과 그 가공)

  • PYEUN Jae-Hyeung;PARK Yenog-Ho;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.125-135
    • /
    • 1977
  • Recently, culture of Undaria pinnatifida, one of the representative esculent sea weed, has been prevailing in tile east and south coasta of Korea and reached the mass culture stage. In this study, compositional quality factors for food were studied and the contributory effects of blanching and pigment fixatives in the quality retention of cultured Undaria pinnatifida are discussed. When the place and time of harvesting were the same, cultured pinnatifida showed scarce difference in the chemical composition comparing to tile naturally grown Undaria pinnatifida, but cultured Undaria pinnatifida shelved a considerable difference depending upon the cultured places. In the chemical composition of Undaria pinnatifida, the alginic acid comprising about $40\%$ of the whole solid materials seemed to be responsible for the compositional puality. The chlorophyll and carotenoid content of the clutured Unaria pinnatifida were considerably lower than that of the naturally grown Undaria pinnatifida and wass inferior in puality by color to the naturally grown one. Dried Undaria pinnatifida contained a considerable amount of amino-N, mannitol, and soluble minerals and it is considered that these components play a great role in the relish effects. It could also be evaluated as a good albuminous source for food science the dried pinnatifida contains about $18\%$ of crude protein. In the analysis of free amino acid composition of dried Undaria pinnatifida, the naturally growm samples showed so what higher levels in all amino acid content than the cultured samples. The contents of theronine, alanine, and glutamic acid were major in quantity wherease histidine cysteine, tyrosine, and phenylalanine were minor. The contents of such amino acids like serine and proline were particularly low or undetectable. The results of amino acid analysis of the acid hydrolysates of dried Undaria pinnatifida in quantity of individual amino acid showed te same pattern as that of free amino acid. It is noticed that Undaria pinnatifida seemed to contain good quality protein since the contents of essential amino acids were considerably higher and uniform. By blanching the fresh sample, the water soluble components brought about cousiderable loss, and, particularly, it was noteworthy that both mannitol and soluble minerals apparently decreased. In the pigment analysis of the dried sample, blanching was effective to retain chlorophyll and carotenoid. The addition of pigment fixatives in blanching solution such as Ca-gluconate, Ca-carbonate, and Ca-hydroxide did not exhibit much effect on the pigment retention except that Ca-carbonate shelved some effect only in the early stage of storage.

  • PDF

Chemical Composition of Dried Leaves and Stems and Cured Tubers of Yacon (Polymnia sonchifolia) (야콘(Polymnia sonchifolia)의 건초 잎과 줄기 및 후숙된 괴근의 화학성분)

  • 은종방;이범수;이진철;양호철;정동식
    • Food Science and Preservation
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • Chemical composition of fresh and dried leaves and stems and fresh and cured tubers of bacon (Polymnia sonchifolia) was investigated. The moisture content of fresh leaves, stems, and tubers was 83.38, 92.30 and 89.52%, and there of dried leaves and stems were 18.08 and 27.97% and that of cured tubers was 27.97%. The content of lipid, protein, soluble solid, ascorbic acids chlorophyll and tannin was higher in leaves of yacon than in stems of that. In fresh and cured yacon, the content of protein were 0.04% both of them, of lipid was 0.31 and 0.54%; of ash, 0.40 and 0.42%; of ascorbic acids 2.77 and 2.87 mg/100 g. The major minerals of leaves, stem, and tubers of bacon were P, K, and Mg. The major free sugars of leaves, stems and tubers of bacon were glucose and fructose and after curing all free sugars of tubers of bacon were increased. The most abundant free amino acid was isoleucine in the leaves, stem, and tubers of bacon. The content of beta-carotene was 9.01 $\mu\textrm{g}$/100g in fresh leaves and 107.87 $\mu\textrm{g}$/100 g in dried leaves, and 0.40 $\mu\textrm{g}$/100 g in fresh tubers of bacon and 055 $\mu\textrm{g}$/100 g in cured tubers.

Changes in Physicochemical Characteristics of Barley Leaves During Growth (보리잎의 성숙시기별 이화학적 특성)

  • Kim, Kyung-Tack;Seog, Ho-Moon;Kim, Sung-Soo;Lee, Young-Tack;Hong, Hee-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.471-474
    • /
    • 1994
  • Growing barley leaves with $20{\sim}50cm$ length were analyzed for chemical constituents including moisture, crude fiber, protein, fat, ash, free sugars, free amino acids, chlorophylls, vitamin C and minerals. During the growth of barley leaves, moisture content decreased, while crude fiber gradually increased. Protein, fat and ash contents of barley leaves remained relatively unchanged. Chlorophyll content increased to a maximum value at the leaf length of 20 cm, and then declined. Minerals of barley leaves were abundant in the following order of K>Ca>P>Na>Mg. Vitamin C content, showing the similar trend to chlorophyll, was the highest at the leaf length of 20 cm. Major free sugars present in growing barley leaves were identified as glucose, fructose and sucrose. All the free sugars reached their maximum values at 20 cm and they were reduced thereafter. Total amount of free amino acids varied from 803 mg% at the Barley stage of l0 cm to 1038 mg% at the later stage of 50 cm. Changes in content for each amino acid were variable to some extent.

  • PDF

Glyphosate Toxicity: II. EPSP-synthase Activity in Cell Suspension Culture of Corydalis Sempervirens and Lycopersicon Esculentum (Glyphosate 독성(毒性): II. corydalis Sempervirens와 토마토의 세포배양체(細胞培養體)에서 EPSP-synthase의 활성(活性)에 미치는 영향(影響))

  • Kim, Tae-Wan;Amrhein, Nikolaus
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.148-153
    • /
    • 1995
  • Glyphosate (N-[phosphonomethyl]glycine) applied to the assimilate-exporting leaves or sprayed to the whole plants of tomato(Lycopersicon esculentum Mil var. Moneymaker) induced the rapid inhibition of 5-enolpyruvyl skimic acid 3-phosphate synthase(EPSP-synthase). It shows that EPSP-synthase activity precedes chlorophyll loss. There is no difference in EPSP-synthase activity between in vivo tomato meristem and cell suspension culture if glyphosate is not applied. The EPSP-synthase activity is in a range of 4 to 6 nkat per mg protein. The inhibition of EPSP-synthase action is induced within 36 h after glyphosate application while the Chl contents were reduced 48 h after the application. In cell suspension culture of tomato and Corydalis (Corydalis sempervirens), a sublethal concentration of glyphosate retards the fresh weight increase and prolonged lag phase. The fresh weight is reached maximal about 14 days after the subculture in the presence of glyphosate. The inhibitory effect of glyphosate on EPSP-synthase is remarkably induced in lag phase.

  • PDF

Changes of RuBisCO Content and Protease Activity during the Life Span of Tobacco Leaf (담배잎의 일생에 있어서 RuBisCO 함량과 Protease활성의 변동)

  • 이학수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 1993
  • Changes in the amount of ribulose 1, 5-bisphosphate carboxylase/oygenase(=RuBisCO) protein, namely fraction I protein, and the protease activity were determined in the 10th leaf of tobacco(Nicotiana tabacum, var. Ky-57) from 10 days after emergence through senescence at 5 days interval. The amount of RuBisCO per deveined leaf rapidly increased during the early growing season, reached a maximal quantity at the around 20 days after leaf emergence, when the leaf has gone through its most rapid expansion, and began gradually to decrease till 30 days after leaf emergence, thereafter significantly declined to 45 days that the leaf has been dried up partly. The pattern of the ratio of RuBisCO protein to soluble protein in quantity changed similar to that of RuBisCO contents in a leaf, that was 43%, 60%, and 21% at the around 10 days, 20 days, and 45 days, respectively. And RuBisCO contents was linearly correlated with the concentration of chlorophyll(r=0.98) throughout the life span of the leaf. So, it was assumed that the leaf color can be a useful indicator for judging whether RuBisCO contents higher or not in tobacco leaves without homogenization. On the other hand, the protease activities for degradation of casein were assayed at pH 5.5. 7.0. and 8.5 with crude extracts desalted on Sephadex G-25. The highest caseolytic activity was found at pH 5.5 throughout the life sawn of the leaf. Also, the activity at 5.5 became gradually to increase from 30 days after leaf emergence, when RuBisCO protein had became to disappear and remarkably increased in the last stage of senescence, although nitrogen contents of the leaf had reached low levels. The caseolytic activity at pH 5.5 was in negative correlation with RuBisCO contents throughout the life span of the leaf, but not in lineality between them. In other words, the caseolytic activity increased in a rapid exponential manner when RuBisCO contents had reached some low levels. These results showed that the leaf age, namely harvesting time, is a very important factor for the production of the tobacco leaf containing higher RuBisCO protein. It was concluded that the practical harvesting time is between 20 days and 30 days after the leaf emergence from the present results.

  • PDF

Annotation and Expression Profile Analysis of cDNAs from the Antarctic Diatom Chaetoceros neogracile

  • Jung, Gyeong-Seo;Lee, Choul-Gyun;Kang, Sung-Ho;Jin, Eon-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1330-1337
    • /
    • 2007
  • To better understand the gene expression of the cold-adapted polar diatom, we conducted a survey of the Chaetoceros neogracile transcriptome by cDNA sequencing and expression of interested cDNAs from the Antarctic diatom. A non-normalized cDNA library was constructed from the C. neogracile, and a total of 2,500 cDNAs were sequenced to generate 1,881 high-quality expressed sequence tags (ESTs) (accession numbers EL620615-EL622495). Based on their clustering, we identified 154 unique clusters comprising 342 ESTs. The remaining 1,540 ESTs did not cluster. The number of unique genes identified in the data set is thus estimated to be 1,694. Taking advantage of various tools and databases, putative functions were assigned to 939 (55.4%) of these genes. Of the remaining 540 (31.9%) unknown sequences, 215 (12.7%) appeared to be C. neogracile-specific since they lacked any significant sequence similarity to any sequence available in the public databases. C. neogracile consisted of a relatively high percentage of genes involved in metabolism, genetic information processing, cellular processes, defense or stress resistance, photosynthesis, structure, and signal transduction. From the ESTs, the expression of these putative C. neogracile genes was investigated: fucoxanthin chlorophyll (chl) a,c-binding protein (FCP), ascorbate peroxidase (ASP), and heat-shock protein 90 (HSP90). The abundance of ASP and HSP90 changed substantially in response to different culture conditions, indicating the possible regulation of these genes in C. neogracile.

Screening of Multiple Abiotic Stress-Induced Genes in Italian Ryegrass leaves

  • Lee, Sang-Hoon;Rahman, Md. Atikur;Kim, Kwan-Woo;Lee, Jin-Wook;Ji, Hee Chung;Choi, Gi Jun;Song, Yowook;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.190-195
    • /
    • 2018
  • Cold, salt and heat are the most critical factors that restrict full genetic potential, growth and development of crops globally. However, clarification of genes expression and regulation is a fundamental approach to understanding the adaptive response of plants under unfavorable environments. In this study, we applied an annealing control primer (ACP) based on the GeneFishing approach to identify differentially expressed genes (DEGs) in Italian ryegrass (cv. Kowinearly) leaves under cold, salt and heat stresses. Two-week-old seedlings were exposed to cold ($4^{\circ}C$), salt (NaCl 200 mM) and heat ($42^{\circ}C$) treatments for six hours. A total 8 differentially expressed genes were isolated from ryegrass leaves. These genes were sequenced then identified and validated using the National Center for Biotechnology Information (NCBI) database. We identified several promising genes encoding light harvesting chlorophyll a/b binding protein, alpha-glactosidase b, chromosome 3B, elongation factor 1-alpha, FLbaf106f03, Lolium multiflorum plastid, complete genome, translation initiation factor SUI1, and glyceraldehyde-3-phosphate dehydrogenase. These genes were potentially involved in photosynthesis, plant development, protein synthesis and abiotic stress tolerance in plants. However, this study provides new insight regarding molecular information about several genes in response to multiple abiotic stresses. Additionally, these genes may be useful for enhancement of abiotic stress tolerance in fodder crops as well a crop improvement under unfavorable environmental conditions.

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

Metaproteomic analysis of harmful algal bloom in the Daechung reservoir, Korea

  • Choi, Jong-Soon;Park, Yun Hwan;Kim, Soo Hyeon;Park, Ju Seong;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.424-432
    • /
    • 2020
  • The present study aimed to analyze the metaproteome of the microbial community comprising harmful algal bloom (HAB) in the Daechung reservoir, Korea. HAB samples located at GPS coordinates of 36°29'N latitude and 127°28'E longitude were harvested in October 2013. Microscopic observation of the HAB samples revealed red signals that were presumably caused by the autofluorescence of chlorophyll and phycocyanin in viable cyanobacteria. Metaproteomic analysis was performed by a gelbased shotgun proteomic method. Protein identification was conducted through a two-step analysis including a forward search strategy (FSS) (random search with the National Center for Biotechnology Information (NCBI), Cyanobase, and Phytozome), and a subsequent reverse search strategy (RSS) (additional Cyanobase search with a decoy database). The total number of proteins identified by the two-step analysis (FSS and RSS) was 1.8-fold higher than that by one-step analysis (FSS only). A total of 194 proteins were assigned to 12 cyanobacterial species (99 mol%) and one green algae species (1 mol%). Among the species identified, the toxic microcystin-producing Microcystis aeruginosa NIES-843 (62.3%) species was the most dominant. The largest functional category was proteins belonging to the energy category (39%), followed by metabolism (15%), and translation (12%). This study will be a good reference for monitoring ecological variations at the meta-protein level of aquatic microalgae for understanding HAB.

Changes in Level of Several Functional Components and ACE-Inhibitory Activity in Developing Soybean Seeds

  • Jun Woo-Jin;Lee Ji-Hyun;Shim Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.329-333
    • /
    • 2006
  • Soybean quality is determined based on protein content, lipid content and fatty acid composition, and several functional components including isoflavones, anthocyanins and functional activity. Because the level of each component changes during seed development, it is necessary to know the concentration of quality-related components in developing seeds. Little is known of the pattern of changes in quality-related components. Seeds from field-grown soybean was harvest from the $R_6$ stage to the $R_8$ stage in 2004. Seed characteristics and the level of nutritional components were examined. Seed moisture content was dropped rapidly after the $R_7$ stage in the tested varieties. Seed growth rate was the highest from the beginning of the $R_6$ stage to the mid-$R_6$ stage. Chlorophyll content was decreased rapidly in pods and seeds. However, seed growth period from the $R_6\;to\;R_8$ was 35 days. The crude protein content was. increased dramatically between 63 DAF and 70 DAF and then increased slightly. The pattern of isoflavone accumulation was nearly similar to that of seed weight increase. From the late $R_6$ stage to the $R_7$, the accumulation rate was higher as compared to other stages. The angiotensin inhibitory activity was increased according to seed development from 63 ($R_6$) to 84 DAF ($R_8$). The difference of inhibitory activity in heated soybean powder, however, was not great among stages. The inhibitory activity was affected by heating treatment. The most effective heating time was 10 min. Excessive heating longer than 30 min resulted in a lowered inhibitory activity of soybean on ACE.