• Title/Summary/Keyword: chlorophyll protein

Search Result 247, Processing Time 0.033 seconds

Stabilization of Membrane Proteins by Benzyladenine during Wheat Leaf Senescence (노쇠중인 밀잎에서 Benzyladenine에 의한 막단백질의 안정화)

  • 진창덕
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • The effect of benzyladenine (BA) on lipid peroxidation and compositions of total insoluble proteins and chloroplast thylakoid protein from wheat primary leaves during senescence in the dark was studied. BA ($10^{-5}\;M$) treatment prevented conspicuously the loss of chlorophyll content and soluble and insoluble leaf protein contents in senescing wheat leaf segments during 4-day dark incubation. Under the BA treatment, especially, the level of insoluble protein was highly maintained than that of soluble protein. Also, the increase of malondialdehyde (MDA: the peroxidation product of membrane lipids) content was inhibited in the BA treated leaves. Three major polypeptide bands in quantity corresponding to 57, 26 and 12 KD molecular weight were clearly resolved with other minor bands by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in the insoluble protein fraction. The insoluble protein profiles of the control leaves showed a remarkable decrease in the intensity of the 57 and 12 KD band except for 26 KD band in the 72 h dark incubation. This loss during dark incubation was reduced by BA treatment. More than 20 polypeptides were resolved in the chloroplast thylakoid membrane fraction with the most prominent bands which are 59 and 57 KD ($\alpha\;and\;\beta$ subunit of coupling factor: CF) and 26 KD (apoprotein of LHCP). The changes in thylakoid protein profile during 72 h dark incubation showed the rapid degradation in control, but this degradation was prevented in quantity by BA treatment. The above results suggested that BA would inhibit the peroxidation of membrane lipids, thereby preventing the loss of membrane proteins which led to the maintenance of the membrane integrity including chloroplast thylakoid.

  • PDF

Yield and Malt Quality Responses of Two Malt Barley Cultivars to Application Levels of Nitrogen Fertilizer (질소시비에 따른 맥주맥 품종간의 수량 및 품종반응에 관한 연구)

  • 하기용;구자옥;김용재
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.43-58
    • /
    • 1980
  • The study was intended to know the responses of the nitrogen application levels (3, 6, 9, 12 and 15kg ai per $1O^a$) to grain yield and quality of two-malting barley, Golden melon and Hyang maek in 1980. There was investigated chlorophyll content, dry weight, heading, grain yield, yield components, contents of protein, fat and carbohydrate and activity of $\beta$-amylase and invertase. Nitrogen increment was effective to increase of number of grains per spike and number of spikes per unit area, increase of protein content and decrease of $\beta$-amylase activity, but it was not recognized the yield increase under the 12% protein content.

  • PDF

Spatio-Temporal Variation Characteristics of Primary Productivity and Environmental Factors of Shellfish Mariculture in Jaran Bay, Korea (자란만 패류양식어장의 기초생산력 및 환경인자 변동 특성)

  • Lee, Dae In;Choi, Yong-Hyeon;Hong, SokJin;Kim, Hyung Chul;Lee, Won-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.721-734
    • /
    • 2022
  • This study analyzed the spatio-temporal variation characteristics of major environmental factors such as primary productivity (PP), chlorophyll a, nutrients, sinking particle matters, and organic contamination and biochemical composition of surface sediment on a monthly basis for approximately 2 years around shellfish mariculture in Jaran Bay, Korea. In addition, PP in Jaran Bay was compared with that in other coastal areas and related policy plans were proposed. The average PP of the study area was high in summer and autumn with 6.43~115.43 mgC m-2 hr-1 range. This was lower than that in Gamak Bay and Masan Bay, whereas higher than that in Garorim Bay and the West Sea. The PP in coastal waters, where many aquaculture farms were distributed, significantly fluctuated. The different size compositions of phytoplanktons constituting chlorophyll a slightly varied by month, and little restriction existed on the productivity of phytoplanktons owing to the depletion of nutrients. Typically, the Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplanktons. The biochemical composition of particulate organic matters in the water column showed the highest carbohydrates, but lipids and protein contents were high in surface sediments. The concentration of TOC and AVS of the surface sediments was high at inside of bay, and sometimes, exceeded the environmental criteria of fishing grounds. The organic C:N ratio of sediments ranged from 8.1 to 10.4 on average. PP had the highest correlation with chlorophyll a, nitrogen and protein of particle organic materials. Recently, chlorophyll a, DIN, and DIP of water column trends tended to decrease, however, the contamination of sediments increased. Considering the annual PP of 125.9 gC m-2 yr-1 and mariculture area (oyster) of 4.97 km2, the annual carbon production from phytoplanktons was estimated to be about 625 tons, and the annual total wet weight of shellfish (oyster) was estimated to be about 6,250 tons.

Development of a Simple and Reproducible Method for Removal of Contaminants from Ginseng Protein Samples Prior to Proteomics Analysis (활성탄을 이용한 불순물제거에 의한 효과적인 인삼 조직 단백질체 분석 방법 개선 연구)

  • Gupta, Ravi;Kim, So Wun;Min, Chul Woo;Sung, Gi-Ho;Agrawal, Ganesh Kumar;Rakwal, Randeep;Jo, Ick Hyun;Bang, Kyong Hwan;Kim, Young-Chang;Kim, Kee-Hong;Kim, Sun Tae
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.826-832
    • /
    • 2015
  • This study describes the effects of activated charcoal on the removal of salts, detergents, and pigments from protein extracts of ginseng leaves and roots. Incubation of protein extracts with 5% (w/v) activated charcoal (100-400 mesh) for 30 min at 4℃ almost removed the salts and detergents including NP-40 as can be observed on SDS-PAGE. In addition, analysis of chlorophyll content showed significant depletion of chlorophyll (~33%) after activated charcoal treatment, suggesting potential effect of activated charcoal on removal of pigments too along with the salts and detergents. 2-DE analysis of activated charcoal treated protein samples showed better resolution of proteins, further indicating the efficacy of activated charcoal in clearing of protein samples. In case of root proteins, although not major differences were observed on SDS-PAGE, 2-DE gels showed better resolution of spots after charcoal treatment. In addition, both Hierarchical clustering (HCL) and Principle component analysis (PCA) clearly separated acetone sample from rest of the samples. Phenol and AC-phenol samples almost overlapped each other suggesting no major differences between these samples. Overall, these results showed that activated charcoal can be used in a simple manner to remove the salts, detergents and pigments from the protein extracts of various plant tissues.

Differences of Photosynthetic Ability of Tobacco and Ginseng Leaves in Accordance with Light Intensity (광도에 따른 담배와 인삼엽의 광합성 능력의 차이)

  • Hwang, Jong-Kyu;Hyun, Dong-Yun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.2
    • /
    • pp.211-219
    • /
    • 1989
  • Tobacco and ginseng plants differed in responses to varied light intensities. Tobacco showed high in CO$_2$ uptake and RuBPCase activity at 1900 ${\mu}$ E m/sup-2/ sec$\^$-1/, being high by 3.7 times and 2.7 times than ginseng respectively. Close positive relationships existed between CO$_2$ uptake and RuBPCase activity in tobacco. However, ginseng showed negative correlation. The activity of glycolate oxidase and malate dehydrogenase in tobacco was high at 1900 ${\mu}$ E m/sup-2/ sec$\^$-1/, but those of ginseng was high at 1000 ${\mu}$ E m/sup-2/ sec$\^$-1/. Nitrate reductase activity of tobacco at 1900 ${\mu}$ E m/sup-2/ sec$\^$-1/ was 2 times higher than that at 500 ${\mu}$ E m/sup-2/ sec$\^$-1/, while that of ginseng was no detected in all plots. The content of protein and chlorophyll in tobacco was 2.2 times and 1.5 times higher than in ginseng at the most efficient light intensity. The ratio of chlorophyll a/b in tobacco was low at 500 ${\mu}$ E m/sup-2/ sec$\^$-1/, while that of ginseng was low at 1000 ${\mu}$ E m/sup-2/ sec$\^$-1/. The relationships between protein and chlorophyll was high positive correlation. However, on 5 days after treatment, ginseng showed negative correlation at 500 ${\mu}$ E m/sup-2/ sec$\^$-1/. Tobacco and ginseng showed different leaf soluble protein patterns on SDS-gel electrophoresis. The molecular weights of two major band were 50 KD and 15 KD in both plants. The major bands in tobacco were thinned at 500 ${\mu}$ E m/sup-2/ sec$\^$-1/, while those in ginseng thinned at 1000 ${\mu}$ E m/sup-2/ sec$\^$-1/ from 15days after treatment. Disappeared band was 45 KD at 500 ${\mu}$ E m/sup-2/ sec$\^$-1/ in tobacco, but that of ginseng was 47 KD at 1000 ${\mu}$ E m/sup-2/ sec$\^$-1/.

  • PDF

Characterization of Arthrospira platensis Cultured in Nano-bubble Hydrogen Water (나노기포 수소수에서 배양한 Arthrospira platensis 특성 확인)

  • Seo, Ji-Hye;Choi, Soo-Jeong;Lee, Sang-Hoon;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.421-426
    • /
    • 2015
  • Arthrospira platensis (A. platensis) has been used in various fields including dietary supplements as it contains a high protein content and large amounts of unsaturated fatty acids. In addition, it has some pigments such as phycocyanin, myxoxanthophyll and zeaxanthin and thus has been used as a food additive and antioxidant substance. Nano-bubble hydrogen is to dissolve more than the saturation solubility in water by injecting the hydrogen gas in the nano-bubble hydrogen water. The nano-bubbles are known to possess higher antioxidant properties in addition to anticancer effects. In this paper, Arthrospira platensis was cultured in both a normal medium with distilled water and nano-bubble hydrogen water medium and their properties were compared. The cell growth and the content of chlorophyll and carotenoid in the nano-bubble hydrogen water was 15% higher than that of the control. The level of phycocyanin in nano-bubble hydrogen water was also 7% higher than that of the control. However, there were little differences in the lipid content between the nano-bubble and control. To determine the content of the antioxidants, the level of flavonoid and polyphenol were measured. The level of flavonoid in nano-bubble hydrogen water was found to be more than 70% increased when comparing to that of the control, while the level of polyphenol was similar to each other.

Physicochemical Characteristics of Powder from Hot Air and Freeze Dried Leaves and Roots of Acorous calamus L. (열풍건조와 동결건조에 따른 수창포(Acorous calamus L.) 분말의 부위별 이화학적 특성)

  • Beom, Hee-Ju;Kang, Dae-Jin;Lee, Byung-Doo;Shon, Jin-Han;Im, Ji-Soon;Eun, Jong-Bang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.11
    • /
    • pp.1451-1457
    • /
    • 2007
  • The physical and chemical characteristics of powders from hot air and freeze dried leaves and roots of Acorous calamus L. were investigated. Two parts, upper and lower, of leaves, and two kinds of roots, 4 and 6 years old, were dried at 30 and $40^{\circ}C$, freeze-dried, and ground to make powder. Contents of moisture, ash, crude fat, and crude protein in freeze dried powder of upper leaf were 4.87%, 6.73%, 2.22%, and 3.57%, respectively. Water absorption index (WAI) and water solubility index (WSI) in freeze dried powder of lower and upper leaves were 8.476 and 0.077 g/mL. Contents of chlorophyll a, chlorophyll b and total chlorophyll in freeze dried powder of upper leaves were 12.18, 16.86, and 29.11 mg/100 g, respectively. Contents of total and reducing sugar in freeze dried powder of 4 and 6 years roots were $111.89{\sim}119.21$ ppm and $5.02{\sim}5.22$ ppm, $109.92{\sim}114.65$ ppm and $5.21{\sim}5.32ppm$. Contents of total polyphenols and flavonoids in freeze dried powder of upper leaf were 125.02 and $21.02{\mu}g/mg$, respectively.

Protective effect of chlorophyll-removed ethanol extract of Lycium barbarum leaves against non-alcoholic fatty liver disease (클로로필 제거 구기엽 추출물의 비알코올성 지방간 보호 효과)

  • Hansol Lee;Eun Young Bae;Kyung Ah Kim;Sun Yung Ly
    • Journal of Nutrition and Health
    • /
    • v.56 no.2
    • /
    • pp.123-139
    • /
    • 2023
  • Purpose: This study was conducted to establish whether an ethanol extract of Lycium barbarum leaves (LLE) and an ethanol extract of Lycium barbarum leaves from which chlorophyll has been removed, denoted as LLE(Ch-), have a protective effect against hepatic fat accumulation. Methods: The inhibitory effects of LLE and LLE(Ch-) on liver fat accumulation were examined in C57BL/6 mice with non-alcoholic fatty liver disease (NAFLD) induced by an methionine and choline deficient diet and in HepG2 cells with palmitic acid-induced fat accumulation. Results: The plasma triglyceride, aspartate aminotransferase, and alanine aminotransferase levels were lower in the LLE(Ch-) group, whereas the plasma ALT activity decreased significantly in the LLE group. In both the LLE and the LLE(Ch-) groups, the triglyceride and cholesterol contents in the hepatic tissue were significantly reduced. A greater inhibitory effect on tissue fat accumulation was observed in the LLE(Ch-) group than in the LLE group. In HepG2 cells, LLE and LLE(Ch-) were non-toxic up to a concentration of 1,000 ㎍/mL. Compared to the control group, intracellular fat accumulation in the LLE and LLE(Ch-) groups were significantly reduced at concentrations of 200 ㎍/mL and 500 ㎍/mL, respectively. The expression of phosphorylated adenosine monophosphate-activated protein kinase and phosphorylated acetyl-CoA carboxylase in both LLE groups increased at the concentrations of 100 ㎍/mL and 500 ㎍/mL. The fatty acid synthase expression was suppressed in a concentration-dependent manner at 10 ㎍/mL. Conclusion: The examined two ethanol extracts of LLE inhibit hepatic fat accumulation in NAFLD. This effect was more pronounced in the LLE(Ch-) group. Therefore, these 2 extracts have an anti-steatosis effect and can be used for NAFLD treatment.

Effects of Artificial Light Sources on Growth and Glucosinolate Contents of Hydroponically Grown Kale in Plant Factory (식물공장 인공광원이 케일의 생육 및 글루코시놀레이트 함량에 미치는 영향)

  • Lee, Guang-Jae;Heo, Jeong-Wook;Jung, Chung-Ryul;Kim, Hyun-Hwan;Jo, Jung-Su;Lee, Jun-Gu;Lee, Gyeong-Ja;Nam, Sang-Young;Hong, Eui-Yon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.77-82
    • /
    • 2016
  • This study was carried out to investigate the effects of artificial light sources on growth, yield, and glucosinolate content of hydoroponically grown Peucedanum japonicum in plant factory. Treatments were given with LED Blue:White(1:1, B:W), LED Red:Blue:White(2:1:3, RBW), and LED Blue:White(1:1)+Florescent lamp(BW+FL). Number of harvested leaves and leaf weight of BW+FL were higher than BW and RBW. BW+FL in leaf length and RBW in leaf width were significant difference with other treatments. Chlorophyll content and 'L' value were not significant difference among the treatments. The 'a' and 'b' value is the lowest in BW+FL. Glucosinolate content was high in order of glucobrassicin, glucoiberin, sinigrin, gluconasturtiin, progoitrin, glucoraphamin, and epiprogoitrin in all treatments, and total glucosinolate content was the highest in RBW treatment. Moisture, crude protein, crude fat, and ash content of leaves were not different among the treatments. In conclusion, this study showed that light caused growth and secondary metabolites synthesis, and we recommend to further study between light and secondary metabolites for increasing functionality.

The Role of Nitric Oxide on the Growth Regulation of Chinese Cabbage (Brassica campestris L.) Primary Leaves (배추 (Brassica campestris L.) 제 1엽의 생장조절에 대한 Nitric Oxide의 역할)

  • Ham Jeong-Hun;Jin Chang-Duck
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.293-300
    • /
    • 2005
  • The possible role of nitric oxide (NO)-induced cell division was investigated to explain the physiologycal effects of a NO donor, sodium nitroprusside (SNP) on the growth of primary leaves in chinese cabbage seedling plants. Exogenous treatment of SNP to chinese cabbage plants for 8 days at different concentrations (0, 200, 500 and 1000 ${\mu}M$) affected the leaf growth in a concentration-dependent manner, showing a maximum growth at $200\;{\mu}M$. In accordance with leaf growth responses, the chlorophyll and soluble protein contents increased strongly to 142% and 134% of control at $200\;{\mu}M$ SNP, respectively. However, a very little decrease in chlorophyll and a 13%> decrease in protein were observed at $1000\;{\mu}M$ SNP. In addition, the content of DNA and RNA also increased maximumly to 142% and 139% of the control at $200\;{\mu}M$ SNP, respectively, whereas they decreased to 80% and 84% of the control at $1000\;{\mu}M$ SNP. With respect to the development of enzymes related to cell wall synthesis, $200\;{\mu}M$ SNP led to the maximum activities in both phenylalanine ammonia-lyase (212% of the control) and guaiacol peroxidase (134% of the control). However, the activities of both enzymes were not modified significantly at $1000\;{\mu}M$ SNP. In conclusion, these results suggest that the enhancement of leaf growth in chinese cabbage plants by SNP at the effective concentration was probably due to the NO ability in the induction of cell division.