• 제목/요약/키워드: chlorophyll biosynthesis

검색결과 55건 처리시간 0.034초

광합성 미세조류 Nannochloropsis oculata의 최적배양 조건 (Optimal Culture Conditions for Photosynthetic Microalgae Nannochloropsis oculata)

  • 박현진;진은정;정태만;주현;이재화
    • 공업화학
    • /
    • 제21권6호
    • /
    • pp.659-663
    • /
    • 2010
  • 미세조류는 전 세계 바다에 분포하고 있으며 일부 종들은 인간의 식품에 이용되어 왔다. 특히, 광합성 미세조류 Nannochloropsis oculata는 영양적 가치가 우수하여 관심을 받고 있다. 본 연구에서는 광합성 미세조류 Nannochloropsis oculata의 고농도배양을 위한 배양온도, 초기 pH, 배양액 선정, 인공해수 농도, 배지농도, $CO_2$영향 등 최적조건을 확립하고자 하였다. 그 결과, 3%의 인공해수, 초기 pH 8.5, 배양온도 $25^{\circ}C$가 최적 배양조건으로 판별되었다. 미세조류에 $CO_2$를 공급하지 않았을 때에는 건조 균체량이 0.76 g/L이었지만, 5% $CO_2$ 공급 이후 1.50 g/L로 높은 성장률을 보였다. 클로로필 생합성은 미세조류 성장과 깊은 연관이 있는 것으로 판명되었다.

자외선 조사에 의한 Nannochloropsis oculata의 지질 축적량 향상 변이주 생성 및 특성 분석 (UV-induced Mutagenesis of Nannochloropsis oculata for the Increase of Lipid Accumulation and its Characterization)

  • 김종훈;박현진;김영화;주현;이상훈;이재화
    • 공업화학
    • /
    • 제24권2호
    • /
    • pp.155-160
    • /
    • 2013
  • 미세조류의 지질축적을 증가시키는 것에 대한 돌연변이 생성 및 분리에 관한 연구는 바이오디젤 산업에 중요한 문제이다. 본 연구에서는, 광합성 미세조류인 Nannochloropsis oculata (N. oculata)를 이용하여 자외선(UV-B 타입)으로 돌연변이를 유도하였다. 그 결과 콜로니가 생성되었고, 그 이후에 f/2 액체배지와 고체배지에 배양하였다. 몇 주간 배양후, 변화된 세포성장률과 세포건조중량, 그리고 몇 가지 중요한 세포 구성 요소를 조사하였다. 수천 개의 변이주 중 두 개의 변이주가 야생균주에 비해서 증가된 세포성장과 높은 지질 축적을 보였다. 또한 증가된 세포성장률과 함께 단백질 과발현 현상이 관찰되었다. 그러나 돌연변이주의 클로로필 생합성의 감소를 확인 할 수 있었다.

Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings

  • Goh, Chang-Hyo;Satoh, Kouji;Kikuchi, Shoshi;Kim, Seong-Cheol;Ko, Suk-Min;Kang, Hong-Gyu;Jeon, Jong-Seong;Kim, Cheol-Soo;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • 제4권4호
    • /
    • pp.281-291
    • /
    • 2010
  • The rice CHLH gene encodes the $Mg^{2+}$-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stressresponsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPXl, OsRACl, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.

클로렐라의 엽록체 발생과정에 있어서의 핵산 및 단백질의 생합성에 관한 연구 (Studies on nucleic acid and protein biosyntheses of Chlorella cells during the course of the chloroplast development)

  • 이영녹;이종삼
    • 미생물학회지
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 1970
  • Nucleic acid and protein biosynthese of the glucose-bleached Chlorella cells in relation to the process of the chloroplast reformation were traced, by measuring the changes in the amounts of cell constituents and nuclease activities of the cells during the greening process. The contents of RNA and protein of the glucose-bleached cells decreased significantly, shile the contents of nucleotides and amino acids of the cells increased to compared with those of the control, showing that the biosynthetic activities of RNA and protein of the cells were inhibited severely in the glucose-bleaching process. In the early greening process of the glucose-bleached Chlorella cells the contents of RNA and protein of the cells increased significantly, while the contents of nucleotides nad amino acids of the cells increased to compared with those of the control, showing that the biosynthetic activities of RNA and protein of the cells were inhibited severely in the glucose-bleaching process. In the early greening process of the glucose-bleached Chlorella cells the contents of RNA and protein of the cells increased significantly wihout any increase in the chlorophyll contents showing that the massive biosynthese of RNA and protein proceed prior to the chlorophyll bioynthesis in the cells. The phosphate contents in the DNA fraction of the glucose-bleached cells decreased, but the contents of acid-insoluble polyphosphate increased to compared with those of the control in the early greening porcess, exhibiting that the incorporation of the phosphorus from acid-insoluble polyphosphate into DNA was retarded. In the greening process of the glucose-bleached cells the ribonuclease nad deoxyribonuclease activities of the cells decreased to compared with those of the control, although the initial activities of the both enzymes in the cell were far great compared with the control. Although the initial phosphate contents in the lipid fraction of the glucose-bleached Chlorella cells were more great than the control, the phosphate contents in the lipid fraction of the cells decreased in the early greening process to compared with control, and then increased in the late developmental stages in which massive chlorophyll biosynthesis occured.

  • PDF

Silencing of NbNAP1 Encoding a Plastidic SufB-like Protein Affects Chloroplast Development in Nicotiana benthamiana

  • Ahn, Chang Sook;Lee, Jeong Hee;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.112-118
    • /
    • 2005
  • It was previously shown that AtNAP1 is a plastidic SufB protein involved in Fe-S cluster assembly in Arabidopsis. In this study, we investigated the effects of depleting SufB protein from plant cells using virus-induced gene silencing (VIGS). VIGS of NbNAP1 encoding a Nicotiana benthamiana homolog of AtNAP1 resulted in a leaf yellowing phenotype. NbNAP1 was expressed ubiquitously in plant tissues with the highest level in roots. A GFP fusion protein of the N-terminal region (M1-V103) of NbNAP1 was targeted to chloroplasts. Depletion of NbNAP1 resulted in reduced numbers of chloroplasts of reduced size. Mitochondria also seemed to be affected. Despite the reduced number and size of the chloroplasts in the NbNAP1 VIGS lines, the expression of many nuclear genes encoding chloroplast-targeted proteins and chlorophyll biosynthesis genes remained unchanged.

배추 유래 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 관련 Brmecp 유전자의 발현 및 분자적 특성 (Molecular and functional characterization of a Brmecp gene encoding 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Brassica rapa)

  • 정유진;최장선;선주남;노일섭;조용구;강권규
    • Journal of Plant Biotechnology
    • /
    • 제39권3호
    • /
    • pp.189-195
    • /
    • 2012
  • In plants, the fifth step of the plastidial 2-Cmethyl-D-erythritol 4-phosphate (MEP) pathway is catalyzed by 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase (MECP; EC: 4. 6. 1. 12), an enzyme proposed to play a key role in the regulation of isoprenoid biosynthesis. Here we report the isolation and functional characterization of a 823 bp Brassica rapa MECP (Brmecp) cDNA encoding a deduced polypeptide of 230 amino acid residues. Transcription levels of Brmecp were two-fold higher in petal compared to leaves. In addition, Brmecp expression in cabbage seedlings treated with ABA, $H_2O_2$ and drought was higher than control seedlings. These results were consistent with changes in chlorophyll contents in transgenic Arabidopsis. Thus, the Brmecp may contribute to the production of primary (chlorophylls and carotenoids) isoprenoid end-products in chloroplasts.

Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

  • Song, Chieun;Chung, Woo Sik;Lim, Chae Oh
    • Molecules and Cells
    • /
    • 제39권6호
    • /
    • pp.477-483
    • /
    • 2016
  • Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide ($H_2O_2$), and an endogenous $H_2O_2$ propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis.

암조건에서 오이자엽의 녹화를 유기시키는 KC-6361 화합물의 작용기구 (Mechanism of the Cucumber Cotyledon Greening Induced by KC6361 in Darkness)

  • 김진석;김태준;조광연
    • 한국잡초학회지
    • /
    • 제14권3호
    • /
    • pp.176-183
    • /
    • 1994
  • 새로 합성된 KC6361화합물은 기존 디페닐에 테르계 화합물에서 보였던 증상(회백색)과는 달리 식물체의 백화를 유기시킬 뿐만아니라 암조건에서 녹화를 유기시키는 생리현상을 가지는 바 본 연구에서는 암조건에서 녹화가 유기되었던 원인을 규명하고자 실험하였다. 1. KC6361은 암조건에서 PPIX의 축적, 광전환 후 Pchlide의 재축적 정도, Shibata shift 등에는 영향이 없었던 반면, ALA, Pchl, Chl은 증가되었으며 이중 Pchl의 축적이 현저하였다. 2. KC6361 또는 phytol을 단독처리하거나 KC6361, phytol, ALA 상호간 혼합처리하였을 때 Pchlide의 Pchl로의 전환이 촉진되었던 것으로 보아 KC6361에 의한 암조건에서 녹화는 phytol이 일부 축적되어 이들이 Pchlide와 에스테르화되었기 때문으로 보였다.

  • PDF

Evaluation of Two Biologically Active Compounds for Control of Wheat Root Rot and its Causal Pathogens

  • Hashem, Mohamed;Hamada, Afaf M.
    • Mycobiology
    • /
    • 제30권4호
    • /
    • pp.233-239
    • /
    • 2002
  • The main aim of this study is to evaluate the efficiency of two biologically active compounds(Strom and F-760) in control of wheat root rot disease and its causal organisms. Fusarium graminearum, F. oxysporum, F. solani and Bipolaris sorokiniana were used as target organisms. In vitro, the two compounds showed fungicidal effect on all investigated pathogens resulted in suppression of radial growth and mycelial dry weight of them. Under greenhouse conditions, treatment of wheat grains with either Strom or F-760 before cultivation significantly reduced the percent of disease distribution as well as the mean disease rating of plants in both seedling and flowering stages. Fresh and dry weights of plants as well as water maintenance capacity were increased as the result of applying these compounds as seed dressing. Also data showed that the membrane stability of plants was injured as a result of infection with all investigated organisms, while this injury was alleviated when F-760 and Strom were applied. The $K^+$ efflux and the leakage of UV absorbing metabolites was stimulated with fungal infection. However, F-760 and Storm treatment partially retarded the stimulatory effect on leakage of $K^+$ and UV-absorbing metabolites of fungal infected plants. On the other side, the fungal infection had inhibitory effects on pigment fractions(chlorophyll a, b, and carotenoids) biosynthesis in wheat leaves. This retarding effect was partially or completely alleviated as the grains were treated with the applied compounds.

Herbicidal Activity of $\delta$-aminolevulinic Acid on Several Plants as Affected by Application Methods

  • Chon, Sang-Uk
    • 한국작물학회지
    • /
    • 제48권1호
    • /
    • pp.50-55
    • /
    • 2003
  • Herbicidal activity of $\delta$-aminolevulinic acid(ALA), an intermediate for the biosynthesis of tetrapyrroles such as chlorophyll, heme, bacteriochlorophyll, and vitamin $\textrm{B}_{12}$ analogues, was examined to determine the variation in phytotoxic potential against different plant species as affected by different application methods. Seed-soaking treatment, ALA at low concentrations did not affect shoot and root lengths of test plants while at highest concentration reduced them by 20 to 30%. Alfalfa showed the most tolerant response to ALA in both pre- and post-emergence application, and followed by rice. When applied with pre-emergence, cotyledons of Chinese cabbage were severely bleached with 0.5 mM of ALA at 24 hrs after application, and root growth of rice, barnyard grass, and alfalfa was significantly inhibited with increasing of concentration. With post-emergence application, ALA at 2 to 4 mM reduced shoot and root growths of Chinese cabbage and barnyard grass completely. Herbicidal effects of ALA were more enhanced in the treatment combined with 2,2-dipyridyl sthan single application in barnyard grass and Chinese cabbage. The results suggest that alfalfa was the most tolerant to ALA among the tested plants, and that post-emergence application of ALA exhibited greatest photodynamic activity against tested plants.