Browse > Article

UV-induced Mutagenesis of Nannochloropsis oculata for the Increase of Lipid Accumulation and its Characterization  

Kim, Jong-Hun (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
Park, Hyun-Jin (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
Kim, Young-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Joo, Hyun (Department of Physiology, College of Medicine, Inje University)
Lee, Sang-Hoon (Korea Food Research Institute)
Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
Publication Information
Applied Chemistry for Engineering / v.24, no.2, 2013 , pp. 155-160 More about this Journal
Abstract
Research on mutant generation and isolation for microalgae yielding enhanced lipid accumulation is an important issue for the production of economic biodiesel. In the present study, ultraviolet (UV-B type) ray induced mutant generation was tried using a photosynthetic microalgae, Nannochloropsis oculata (N. oculata), for the production of biodiesel. The resulting colonies were isolated and further cultured with both liquid and solid state f/2 media. After a few week cultivation, changes of cell growth rate, dry cell weight, and several important intracellular components (chlorophyll, carotenoid, and lipid) were investigated. Two mutants among thousands colonies showed an increased cell growth and high lipid accumulation as compared to those of wild type. It was also observed that the increased cell growth rate is associated with the overexpressed intracellular proteins. However, the mutants showed a decrease in the chlorophyll biosynthesis.
Keywords
microalgae; N. oculata; lipid accumulation; ultra violet; mutation; biodiesel production; chlorophyll;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gustafson, K. R. J. H. Cardellina, R. W. Fuller, O. S. Weislow, R. F. Kiser, K. M. Snader, G. M. C. Patterson, and M. R. Boyd. J. Natl. Cancer. Inst., 81, 1254 (1989).   DOI
2 E. Percival and R. A. J. Foyle, Carbohy. Res., 72, 165 (1989).
3 P. G. Rossler, J. Phycol., 26, 393 (1990).   DOI
4 Y. S. Yun, J. M. Park, and J. W. Yang, Biotechnol. Tech., 10, 713 (1996).
5 A. Demirbas, Pro. Ener. Comb. Sci., 33, 1 (2007).   DOI   ScienceOn
6 B. H. Jo and H. J. Cha, KSBB Journal, 25, 109 (2010).
7 J. Fabregas, A. Maseda, A. Domin, and M. Ferreira, World J. Microbiol. Biotechnol., 20, 31 (2004).   DOI   ScienceOn
8 H. J. Park, Y. H. Kim, and J. H. Lee, Appl. Chem. Eng., 23, 496 (2012).
9 C. Yoo, C. J. Kim, G. G. Choi, C. Y. Ahn, J. S. Choi, and H. M. Oh, The Korean Journal of Microbiology, 45, 268 (2009).
10 Y. H. Kim and J. H. Lee, KSBB Journal, 27, 172 (2012).   DOI   ScienceOn
11 R. R. L. Guillard and J. H. Ryther, Grand. Can. J. Microbiol., 3, 229 (1962).
12 S. I. Lee, J. Y. Park, J. G. Jung, D. G. Lee, S. H. Lee, J. M. Ha, B. J. Ha, and J. H. Lee, J. Life Sci., 15, 847 (2005).   DOI   ScienceOn
13 W. M. S. Chen, and Q. Hu, Biores. Technol., 102, 135 (2011).   DOI   ScienceOn
14 Rameshwar Sharma, Impact of Solar UV-B on Tropical Ecosystems and Agriculture. Case Study: Effect of UV-B on Rice. Proc. SEAWPIT98 & SEAWPIT2000, 1, 92 (2001).
15 E. W. Becker, Microalgae : Biotechnology and Microbiology. Cambridge University Press, Cambridge., 290 (1984).
16 M. A. Borowitzka, J. Appl. Phycol., 4, 267 (1992).   DOI
17 D. L. Noue, J. and N. De Pauw. Biotech. Adv., 6, 725 (1988).   DOI   ScienceOn
18 A. C. Viso, D. Pesando, and C. Baby. Botanica Marina, 30, 41 (1987).
19 O. S. Ciferri, Microbiol. Rev., 47, 551 (1983).