• Title/Summary/Keyword: chloride-induced corrosion

Search Result 112, Processing Time 0.02 seconds

Chloride Diffusion Properties of Concrete with Corrosion Inhibitor (방청제를 함유한 콘크리트의 염소 이온 확산 특성)

  • 구현본;이광명;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.694-699
    • /
    • 2000
  • Recently, the degradation of reinforced concrete structures due to physical and chemical attack has been a major issue in construction engineering. One of the main causes of degradation of concrete structures can be ascribed to chloride-induced corrosion, i.e., the rapid penetration of chloride ions into concrete. To estimate durability of reinforced concrete structures exposed to marine environment, many different kinds of accelerated tests to evaluate the concrete diffusivity were proposed. In this study, present test methods are reviewed and a proper test method for concrete is selected. The diffusion coefficients of concrete with corrosion inhibitor are measured using the proposed method, and then, measured values are compared to those of concrete without corrosion inhibitor. It is found from experimental results that diffusion coefficient re decreased with curing ages.

  • PDF

Probability-Based Prediction of Time to Corrosion Initiation of RC Structure Exposed to Salt Attack Environment Considering Uncertainties (불확실성을 고려한 RC구조물의 부식개시시기에 대한 확률 기반 예측)

  • Kim, Jin-Su;Do, Jeong-Yun;Hun, Seung;Soh, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.249-252
    • /
    • 2005
  • Chloride ingress is a common cause of deterioration of reinforced concrete structures. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modelling is also needed for predicting the deterioration of a reinforced structure. This paper presents an approach for the probabilistic modeling of the chloride-induced corrosion of reinforcement steel in concrete structures that takes into account the uncertainties in the physical models. The parameters of the models are modeled as random variables and the distribution of the corrosion time and probability of corrosion are determined by using Monte Carlo simulation. The predictions of the proposed model is very effective to do the decision-making about initiation time and deterioration degree.

  • PDF

Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides

  • Gerengi, Husnu;Kocak, Yilmaz;Jazdzewska, Agata;Kurtay, Mine
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete structures. The electrochemical impedance of reinforcing steel in diatomite- and zeolite-containing concrete exposed to sodium chloride was assessed. Chemical, physical and mineralogical properties of three concrete samples (20% diatomite, 20% zeolite, and a reference containing neither) were correlated with corrosion investigations. The steel-reinforced samples were exposed to 3.5% NaCl solution for 500 days, and measured every 15 days via EIS method. Results indicated that porosity and capillary spaces increase the diffusion rate of water and electrolytes throughout the concrete, making it more susceptible to cracking. Reinforcement in the reference concrete was the most corroded compare to the zeolite and the diatomite samples.

The Effects of Culture Conditions for Microbially Influenced Corrosion

  • Kim, Pill J.;Woo, Seung H.;Park, Jong M.
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.260-265
    • /
    • 2003
  • The experimental methods to rapidly and stably reproduce Microbially Influenced Corrosion (MIC) of stainless steel by sulfate-reducing bacteria such as Desulfovibrio vulgaris were developed. In this study, using two types of stainless steel, 304 and 444, obtained from Pohang Steel & Iron Co., Ltd. (POSCO)., three major factors were tested; overall medium composition, dilution ratio, and chloride concentration. In the overall medium tests, three different media were prepared according to $FeSO_4$ concentration; PM (original Postgate's medium No. 2), MPM 1 (modified PM, no $FeSO_4$, MPM 2 (modified PM, 1/10 $FeSO_4$). The effects of various dilution ratios (3, 1, 1/3, 1/10, 1/30, and 1/100 times) and chloride concentrations (0.0067M, 0.01M, 0.05M, and 0.1M) were examined during 2 months cultivation. Through SEM (Scanning Electron Microscopy) observation, the diluted and modified media, particularly the $1/3{\times}MPM$ I medium, showed more micro-pitting points on surfaces compared to the original PM medium. High concentrations of chloride ions (above 0.05M) were not adequate for observation of MIC since those brought about non-microbiologically induced corrosion. From this study, the optimization of medium composition was very effective to routinely observe MIC in a laboratory system.

Improvement of Chloride Induced Stress Corrosion Cracking Resistance of Welded 304L Stainless Steel by Ultrasonic Shot Peening

  • Hyunhak Cho;Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-277
    • /
    • 2024
  • Due to its good corrosion and heat resistance with excellent mechanical properties, 304L stainless steel is commonly used in the fabrication of spent nuclear fuel dry storage canisters. However, welds are sensitive to stress corrosion cracking (SCC) due to residual stress generation. Although SCC resistance can be improved by stress relieving the weld and changing the chloride environment, it is difficult to change corrosion environment for certain applications. Stress control in the weld can improve SCC resistance. Ultrasonic shot peening (USP) needs further research as compressive residual stresses and microstructure changes due to plastic deformation may play a role in improving SCC resistance. In this study, 304L stainless steel was welded to generate residual stresses and exposed to a chloride environment after USP treatment to improve SCC properties. Effects of USP on SCC resistance and crack growth of specimens with compressive residual stresses generated more than 1 mm from the surface were studied. In addition, correlations of compressive residual stress, grain size, intergranular corrosion properties, and pitting potential with crack propagation rate were determined and the improvement of SCC properties by USP was analyzed.

Prediction of Cover Concrete Cracking due to Chloride Induced Corrosion in Concrete Structures (콘크리트 구조물의 염해부식에 따른 덮개콘크리트의 균열예측)

  • Lim, Dong-Woo;Lee, Chang-Hong;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.291-292
    • /
    • 2009
  • In this study, an analysis of cover concrete cracking exposed to the chloride attack was performed based on newly defined durability limit states. Using the methodology in this paper, the prediction of cover concrete cracking and subsequent spalling can be used for the prediction of corrosion induced serviceability degradation of concrete structures subjected chloride attack.

  • PDF

Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.184-199
    • /
    • 2022
  • Steel was exposed in an atmospheric environment, and atmospheric environmental factors that include chloride, humidity, SO2, NO2 etc. induced the corrosion of steel. Corrosivity categories classified by SO2 and chloride deposition rate were low, but those classified by TOW were high in the Korean Peninsula, and on these environmental categories, the corrosivity of atmospheres classified by corrosion rate in carbon steel was low medium, C2-C3, and medium, C3 for zinc, copper, and aluminum. This work performed the outdoor exposure test for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of carbon steel. The atmospheric corrosion behavior of carbon steel is discussed based on the various corrosion factors. When the corrosion product forms on carbon steel by atmospheric corrosion, cracks may also be formed, and through these cracks, the environmental factors can penetrate into the interior of the product, detach some of the corrosion products and finally corrode locally. Thus, the maximum corrosion rate was about 7.3 times greater than the average corrosion rate. The color difference and glossiness of carbon steel by the 10 year-outdoor exposure tests are discussed based on the corrosion rate and the environmental factors.

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

Corrosion Behavior of Titanium for Implant in Simulated Body Fluids (인공 체액 조건에서 임플랜트용 티타늄 소재의 부식 특성)

  • 이중배;최기열
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.110-118
    • /
    • 2004
  • The corrosion of pure titanium (CP- Ti Grade 2) and titanium alloy (Ti6Al4V ELI) were studied under various conditions of simulated body fluids. The static immersion test and the electrochemical test were performed in accordance with ISO 10271 : 2001. For the electrochemical test, the open circuit potential was monitored as a function of time, and the cyclic polarization curve was recorded. The corrosion resistance was evaluated from the values of corrosion potential, passivation current density, breakdown potential, and the shape of hysteresis etc. The effects of alloy type, surface condition, temperature, oxygen, and constituents in the fluids such as acid, chloride were estimated. Both specimens had extremely low dissolution rate in the static immersion test. They showed strong passivation characteristics in the electrochemical test. They maintained negligible current density throughout the wide anodic potential range. The passive layer was not broken up to 2.0 V (vs. SCE). The hysteresis and the shift of passivation potential toward the anodic direction was observed during the reversed scan. The passivation process appeared to be accelerated by oxygen in air or that dissolved in the fluids. The passivation also proceeded without oxygen by the reaction of constituents in the fluids. Acid or chloride in the fluids, specially later weakened the passive layer, and then induced higher passivation current density and less shift of passivation potential in the reversed scan. CP-Ti Grade 2 was more reactive than Ti6Al4V ELI in the fluids containing acid or chloride, but thicker layer produced on its surface provided higher corrosion resistance.

Analysis on Penetration of Chloride Ion into Carbonated Concrete in Marine Atmospheric Conditions (해양 대기 환경 하에서 탄산화 콘크리트에 대한 염소이온 침투 해석)

  • Choi, Doo-Man;Jang, Seung-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.233-236
    • /
    • 2006
  • Chloride attack and carbonation induced corrosion of reinforcement are those of the main factors which cause the deterioration of concrete structures. The objective of this study is to suggest an analytic model for the prediction of chloride penetration into carbonated concrete, in order to make up for the current codes. Carbonation depth model considering the moisture effect is validated by being compared with the test data and the analytic model on chloride penetration into carbonated concrete is developed. Finally, the corrosion-initiation time has been predicted by the present model, being compared with that by the current code equation. The comparison shows that the current code equation can underestimate the chloride penetration into carbonated concrete in marine atmospheric conditions.

  • PDF