DOI QR코드

DOI QR Code

Improvement of Chloride Induced Stress Corrosion Cracking Resistance of Welded 304L Stainless Steel by Ultrasonic Shot Peening

  • Hyunhak Cho (Department of Materials Science and Engineering, Andong National University) ;
  • Young Ran Yoo (Materials Research Centre for Energy and Clean Technology, Andong National University) ;
  • Young Sik Kim (Department of Materials Science and Engineering, Andong National University)
  • Received : 2024.07.10
  • Accepted : 2024.07.31
  • Published : 2024.08.30

Abstract

Due to its good corrosion and heat resistance with excellent mechanical properties, 304L stainless steel is commonly used in the fabrication of spent nuclear fuel dry storage canisters. However, welds are sensitive to stress corrosion cracking (SCC) due to residual stress generation. Although SCC resistance can be improved by stress relieving the weld and changing the chloride environment, it is difficult to change corrosion environment for certain applications. Stress control in the weld can improve SCC resistance. Ultrasonic shot peening (USP) needs further research as compressive residual stresses and microstructure changes due to plastic deformation may play a role in improving SCC resistance. In this study, 304L stainless steel was welded to generate residual stresses and exposed to a chloride environment after USP treatment to improve SCC properties. Effects of USP on SCC resistance and crack growth of specimens with compressive residual stresses generated more than 1 mm from the surface were studied. In addition, correlations of compressive residual stress, grain size, intergranular corrosion properties, and pitting potential with crack propagation rate were determined and the improvement of SCC properties by USP was analyzed.

Keywords

Acknowledgement

This research was supported by a grant from the 2023-2024 research funds of Andong National University.

References

  1. M. John, A. M. Ralls, M. Misra, and P. L. Menezes, Effect of ultrasonic impact peening on stress corrosion cracking resistance of austenitic stainless-steel welds for nuclear canister applications, Journal of Nuclear Materials, 584, 154590 (2023). Doi: https://doi.org/10.1016/j.jnucmat.2023.154590
  2. T. Ahn, G. Oberson and S. DePaula, ECS Transactions, p. 211, The Electrochemical Society, Washington, USA (2013). Doi: https://doi.org/10.1149/05031.0211ecst
  3. H. H. Cho, Y. R. Yoo, and Y. S. Kim, Effect of Ultrasonic Shot Peening on Microstructure and Corrosion Properties of GTA-Welded 304L Stainless Steel, Crystals, 14, 531 (2024). Doi: https://doi.org/10.3390/cryst14060531
  4. W. T. Tsai, C. S. Chang, and J. T. Lee, Effects of Shot Peening on Corrosion and Stress Corrosion Cracking Behaviors of Sensitized Alloy 600 in Thiosulfate Solution, Corrosion Science, 50, 98 (1994). Doi: https://doi.org/10.5006/1.3293507
  5. T. Wang, J. Yu, and B. Dong, Surface Nano Crystallization Induced by Shot Peening and its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel, Surface & Coating Technology, 200, 4777 (2006). Doi: https://doi.org/10.1016/j.surfcoat.2005.04.046
  6. J. H. Kim, W. R. Lee, T. G. Kim, and S. K. Cheong, Transactions of the Korean Society of Mechanical Engineers B, pp. 1041 - 1046, The Korean Society of Mechanical Engineers, Pusan, Korea (2011). Doi: http://dx.doi.org/10.3795/KSME-B.2011.35.10.1041
  7. J. Z. Lu, H. Qi, K. Y. Luo, M. Luo, and X. N. Cheng, Corrosion Behaviour of AISI 304 Stainless Steel Subjected to Massive Laser Shock Peening Impacts with Different Pulse Energies, Corrosion Science, 80, 53 (2014). Doi: https://doi.org/10.1016/j.corsci.2013.11.003
  8. W. Jiang, Y. Luo, H. Wang, and B. Wang, Effect of impact pressure on reducing the weld residual stress by water jet peening in repair weld to 304 stainless steel clad plate, Journal of Pressure Vessel Technology, 137, 031401 (2015). Doi: https://doi.org/10.1115/1.4029655
  9. S. Amini, S. A. Kariman, and R. Teimouri, The Effects of Ultrasonic Peening on Chemical Corrosion Behavior of Aluminum 7075, The International Journal of Advanced Manufacturing Technology, 91, 1091 (2017). Doi: https://doi.org/10.1007/s00170-016-9795-6
  10. M. Malaki, and H. Ding, A Review of Ultrasonic Peening Treatment, Materials and Design, 87, 1072 (2015). Doi: https://doi.org/10.1016/j.matdes.2015.08.102
  11. S. Manchoul, R. B. Sghaier, R. Seddik, and R. Fathallah, Comparison Between Conventional Shot Peening and Ultrasonic Shot Peening, Mechanics & Industry, 19, 603 (2018). Doi: https://doi.org/10.1051/meca/2018045
  12. J. H. Lee, and Y. S. Kim, Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nanocrystal Surface Modification) Treatment, Corrosion Science and Technology, 14, 313 (2015). Doi: https://doi.org/10.14773/cst.2015.14.6.313
  13. C. Ma, M. T. Andani, H. Qin, N. S. Moghaddam, H. Ibrahim, A. Jahadakbar, A. Amerinatanzi, Z. Ren, H. Zhang, G. L. Doll, Y. Dong, M. Elahinia, and C. Ye, Improving Surface Finish and Wear Resistance of Additive Manufactured Nickel-Titanium by Ultrasonic Nano-Crystal Surface Modification, Journal of Materials Processing Technology, 249, 433 (2017). Doi: https://doi.org/10.1016/j.jmatprotec.2017.06.038
  14. Y. R. Yoo, S. H. Choi, and Y. S. Kim, Effect of Laser Shock Peening on the Stress Corrosion Cracking of 304L Stainless Steel, Metals, 13, 516 (2023). Doi: https://doi.org/10.3390/met13030516
  15. K. T. Kim, and Y. S. Kim, Effect of the amplitude in ultrasonic nano-crystalline surface modification on the corrosion properties of alloy 600, Corrosion Science and Technology, 18, 196 (2019). Doi: https://doi.org/10.14773/cst.2019.18.5.196
  16. V. Robin, P. Gilles, A. Brosse, and T. Chaise, ASME 2015 Pressure Vessels and Piping Conference, PVP2015-45973, ASME, Boston, USA (2015). Doi: https://doi.org/10.1115/PVP2015-45973
  17. X. Ling, and G. Ma, Effect of Ultrasonic Impact Treatment on the Stress Corrosion Cracking of 304 Stainless Steel Welded Joints, Journal of Pressure Vessel Technology, 131, 051502 (2009). Doi: https://doi.org/10.1115/1.3147988
  18. SONATS.Available online: https://sonats-et.com/en/ (accessed on 4 January 2024).
  19. F. Yin, M. Rakita, S. Hu, and Q. Han, Overview of Ultrasonic Shot Peening. Surface Engineering, 33, 651 (2017). Doi: https://doi.org/10.1080/02670844.2017.1278838
  20. Q. Zhang, B. Duan, Z. Zhang, J. Wang, and C. Si, Effect of Ultrasonic Shot Peening on Microstructure Evolution and Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy, Journal of Materials Research and Technology, 11, 1090 (2011). Doi: https://doi.org/10.1016/j.jmrt.2021.01.091
  21. ASTM G30-2003, Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens. ASTM International, West Conshohocken, PA, USA (2003).
  22. ASTM G58-2015, Standard Practice for Preparation of Stress-Corrosion Test Specimens for Weldments. ASTM International, West Conshohocken, PA, USA (2015).
  23. ASTM G36-2000, Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution. ASTM International, West Conshohocken, PA, USA (2000).
  24. ASTME 1382, Standard Test Method for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis. ASTM International, West Conshohocken, PA, USA (2015).
  25. J. Z. Lu, K. Y Luo, D. K. Yang, X. N. Cheng, J. L. Hu, F. Z. Dai, H. Qi, L. Zhang, J. S. Zhong, Q. W. Wang, and Y. K. Zhang, Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel, Corrosion Science, 60, 145 (2012). Doi: http://dx.doi.org/10.1016/j.corsci.2012.03.044
  26. G. Liu, J. Lu, and K. Lu, Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening, Materials Science and Engineering: A, 286, 91 (2000). Doi: https://doi.org/10.1016/S0921-5093(00)00686-9
  27. M. Banaszkiewicz, and A. Rehmus-Forc, Stress corrosion cracking of a 60 MW steam turbine rotor, Engineering Failure Analysis, 51, 55 (2015). Doi: https://doi.org/10.1016/j.engfailanal.2015.02.015
  28. H. F. Lopez, M. M. Cisneros, H. Mancha, O. Garcia, and M. J. Perez, Grain size effects on the SCC susceptibility of a nitrogen steel in hot NaCl solutions, Corrosion Science, 48, 913 (2006). Doi: https://doi.org/10.1016/j.corsci.2005.02.017