• Title/Summary/Keyword: chloride ions penetration resistance

Search Result 44, Processing Time 0.033 seconds

An Experimental Study on the Compressive Strength and Chloride ion penetration resistance of Cement Mortar mixing Anion Exchange Resin (음이온교환수지 혼입 시멘트 모르타르의 압축강도 및 염소이온 침투 저항성에 관한 실험적 연구)

  • Jung, Do-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.23-24
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Also, reinforced concrete structures in high salinity environments have low durability due to corrosion of reinforcing bars due to infiltrated chlorine ions. Anion exchange resins have an ability to immobilize chlorine ions in the resin while releasing their anions. As a material, it has already been shown that it is possible to fix the chloride ion inside the cementitious material through the cement mortar experiment. The purpose of this study is to confirm the compressive strength of cement mortar using powdered anion exchange resin after powdering an anion exchange resin. In order to confirm the chloride ion fixation ability of the powder anion exchange resin, chlorine ion penetration resistance test was carried out.

  • PDF

Chloride Penetration Resistance of Concrete Mixed with High Volume Blast Furnace Slag (고르슬래그미분말을 다량 혼입한 콘크리트의 염분침투저항성)

  • Park, Ki-Cheol;Kim, Dong-Hun;Park, Shin;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.40-41
    • /
    • 2014
  • As a result of strength test on BFS concrete, those mixed with 30% and 50% of BFS8000, respectively, showed higher or equivalent strength compare to OPC. As a result of test of chloride penetration on BFS, diffusion coefficients of concrete mixed with 30% FA4000 and FA5000, respectively, showed to restrain average 6.5% of diffusion coefficient compared to OPC. And in case of BFS concrete, those mixed with BFS6000 and BFS8000, restrained diffusion of chloride ions 253% and 336%, respectively, compared to OPC. Therefore, Mixing 50% of BFS was most efficient in order to maximize restraint of chloride penetration according to metathesis of large amount. In this study, when mixing BFS to concrete for long-run durability and restraint against chloride penetration, for BFS, as fineness was higher and mixing it to concrete with less or equivalent 50% of replacement rate, there were results of higher strength compared to OPC and more efficient restraint of chloride ions.

  • PDF

An Experimental Study on Solidifying Mat of System Improving for Durability Improving (고화매트의 내구성 향상을 위한 시스템 개선의 실험적 연구)

  • Hong, Sung-Rog;Lee, Jung-Yoon;Kim, Young-Sam;Park, Hun-Il;Cho, Byoung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.108-109
    • /
    • 2014
  • The purpose of this study is to enhance durability of solidifying mat. solidifying mat excellent mechanical properties of geotextile. multi-layer coating system is applied to the mat and the chloride ions penetration resistance, chemical resistance, accelerated carbonation test were evaluated by testing the durability. Durability test results are as follows. chloride ions penetration resistance results are coated mat is approximately 70 % lower than plain. chemical resistance test results are coated mat no discoloration. accelerated carbonation test results are coated mat is approximately 90 % lower than the plain.

  • PDF

Automatic categorization of chloride migration into concrete modified with CFBC ash

  • Marks, Maria;Jozwiak-Niedzwiedzka, Daria;Glinicki, Michal A.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this investigation was to develop rules for automatic categorization of concrete quality using selected artificial intelligence methods based on machine learning. The range of tested materials included concrete containing a new waste material - solid residue from coal combustion in fluidized bed boilers (CFBC fly ash) used as additive. The rapid chloride permeability test - Nordtest Method BUILD 492 method was used for determining chloride ions penetration in concrete. Performed experimental tests on obtained chloride migration provided data for learning and testing of rules discovered by machine learning techniques. It has been found that machine learning is a tool which can be applied to determine concrete durability. The rules generated by computer programs AQ21 and WEKA using J48 algorithm provided means for adequate categorization of plain concrete and concrete modified with CFBC fly ash as materials of good and acceptable resistance to chloride penetration.

An Evaluation on the Chloride Resistance of Concrete Footing at Coastal Area -Comparision of Performance in Korea Building Code(KBC)- (해안인접지역 기초 구조물콘크리트의 내염해 성능 평가 -건축구조기준과의 성능비교-)

  • Park, Yong-Kyu;Yoon, Gi-Won;Kim, Hyun-Woo;Kim, Yong-Ro;Song, Young-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.148-149
    • /
    • 2016
  • In this paper, the increase in chloride resistance of footing concrete at coastal area was evaluated by replacement of Mineral Admixture. In KBC 2009, the footing concrete's minimum specific concrete strength at coastal area is determined to 35MPa. However, this is criteria only based on the strength aspect. Thus, it is not considered to increase the chloride resistance by replacement of Mineral Admixture. According to the test results of chloride ions penetration resistance, 35MPa class concrete with OPC 100% shown inaccessible state. Low-strength (24~30MPa class) concretes with Mineral Admixture, however, presented better performances. In addition, chloride diffusion coefficient tests showed identical appearance. Therefore, the current KBC's chloride resistance criteria based on only concrete strength has to review for the reason it can cause many problems (ex. cost increases by growing concrete strength and the environmental issues by a lot of cement use).

  • PDF

An Experimental Study on Chloride Ions Penetration of Mortar containing Si/Al Hybrid-Inorganic Salt (Si/Al 복합 무기염을 적용한 모르타르의 염소이온침투깊이에 대한 실험적 연구)

  • Khil, Bae-Su;Kim, Do-Su;Kang, Yong-Sik;Kim, Woo-Jae;Choi, Se-Jin;Kim, Sung-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.417-418
    • /
    • 2009
  • As iron corrosion by means of penetration of chlorides resulted in a serious deterioration of seaside and landfill concrete construction, it is urgently necessary for seaside construction to acquire watertightness and resistance for chloride-attack. Hence in this study, Si/Al liquor type hybrid-inorganic salt which was very effective compound for improving resistance for chloride-attack applied to mortar and then evaluated resistance for chloride-attack with curing(7, 14, 28, 56 days).

  • PDF

Experimental Study on the Chloride Invasion Resistance Properties of Concrete Containing Mineral Admixtures (혼화재 혼입 콘크리트의 염화물 침투저항성에 관한 실험적 연구)

  • Yoo, Jae-Kang;Kim, Dong-Seuk;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.43-48
    • /
    • 2003
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for 3~4 replacement ratios under W/B ratios ranged from 0.40 to 0.55. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a results, the W/B ratios, kinds of admixture and replacement ratios, water curing periods had a great effect on the migration coefficient of chloride ion, and the optimal replacement ratios of admixture had a limitation for each admixtures. Also, the addition of mineral admixtures by mass(replacement of OPC) enhanced the resistance of the mixture to chloride penetration compared with the plain concrete. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures. The compressive strength was shown related to the migration coefficient of chloride ion, the compressive strength increased with the decreasing migration coefficient of chloride ion. Below the 50MPa, the variation of migration coefficient of concrete added mineral admixtures was bigger than plain concrete.

  • PDF

Experimental Study on the Chloride Invasion Resistance Properties of Concrete Containing Mineral Admixtures (혼화재 혼입 콘크리트의 염화물 침투저항성에 관한 실험적 연구)

  • 유재강;김동석;이상수
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.43-48
    • /
    • 2003
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzaolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for 3∼4 replacement ratios under W/B ratios ranged from 0.40 to 0.55. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a results, the W/B ratios, kinds of admixture and replacement ratios, water curing periods had a great effect on the migration coefficient of chloride ion, and the optimal replacement ratios of admixture had a limitation for each admixtures. Also, the addition of mineral admixtures by mass(replacement of OPC) enhanced the resistance of the mixture to chloride penetration compared with the plain concrete. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures. The compressive strength was shown related to the migration coefficient of chloride ion, the compressive strength increased with the decreasing migration coefficient of chloride ion. Below the 50MPa, the variation of migration coefficient of concrete added mineral admixtures was bigger than plain concrete.

  • PDF

A Study on the Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Chloride Invasion Resistance Property of Concrete Immersed in Salt Water (혼화재 종류 및 치환율이 염수에 침지한 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Yoo Jae-Kang;Kim Dong-Seuk;Park Sang-Joon;Won Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.71-76
    • /
    • 2004
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for $3\sim4$ replacement ratios under W/B ratios ranged from 0.40 to 0.55. Specimens were immersed in $3.6\%$ NaCl solution for 330 days, and penetration depth, water soluble chloride contents and acid soluble chloride contents were measured in 28, 91, 182 and 330 days. Then, diffusion coefficient were calculated using total chloride contents. As a results. the kinds of mineral admixture and replacement ratios had a great effect on the resistance property of the concrete to chloride ion invasion compared with the plain concrete. And the optimal replacement ratios of mineral admixture had a limitation for each admixtures. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures and the penetration depth from the concrete skin. Chloride diffusion coefficient of each concretes decreased with the time elapsed. and the diffusion coefficients of the concrete immersed salt water for 330 days had a establishment with the compressive strength measured before immersing.

  • PDF

Evaluation on the Performance of Mortars Made with Calcium Aluminate Cement (칼슘알루미네이트 시멘트 모르타르의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2015
  • In this study, several properties of mortars made with calcium aluminate cement (CAC) such as hydrated products, strength characteristics, absorption, surface electric resistivity and chloride ions penetration resistance were experimentally investigated. The properties of CAC mortars were compared to those of ordinary portland cement (OPC) mortars. From the test results, it was found that the main hydrated products for CAC mortars were of $C_2AH_8$ and $CAH_{10}$, while CH, ettringite and calcite for OPC mortars. The surface electric resistivity and chloride ions penetration resistance of CAC mortars were significantly beneficial compared to those of OPC mortars. However, it should be noted that the absorption properties of CAC mortars were negatively examined. Thus, it needs to have more study for the improvement of surface absorption of CAC matrices. In addition, the combined mixture of CAC and OPC were ineffective to improve some performances of mortars.