• Title/Summary/Keyword: chloride attack durability design

Search Result 41, Processing Time 0.022 seconds

Analysis for Effect of Diffusion Parameter with Time-dependent Diffusion Coefficient on Service Life Considering Deterministic and Probabilistic Method (시간의존성 염화물 확산계수를 고려한 확산 영향인자가 결정론적 및 확률론적 내구수명에 미치는 영향분석)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • The service life evaluation in RC(Reinforced Concrete) structure exposed to chloride attack can be classified into deterministic and probabilistic method, and it significantly varies with design parameters. The present work derives PDF (Probability of Durability Failure) and the related service life considering time-dependent diffusion coefficient and internal parameters such as reference diffusion coefficient, critical chloride content, and time-exponent. When critical chloride content increases to 133.3%, the changing ratios of service life are 134.0~145.4% for deterministic method and 149.2%~152.5% for probabilistic method, respectively. In the case of increasing time-exponent to 200%, they increase to 323.8% for deterministic method and 346.0% for probabilistic method. Through adopting time-diffusion coefficient for probabilistic method, reasonable service life evaluation can be achieved, and it is also verified that increasing time-exponent through mineral admixture is very effective to extension of service life in RC structure.

A Study on the Development of Sustainable Durability Design System for Reinforced Concrete Structure under Chloride Attack Environments (염해 환경하의 철근콘크리트 구조물의 친환경 내구설계 시스템 개발에 관한 연구)

  • Kim, Rak-Hyun;Roh, Seung-Jun;Tae, Sung-Ho
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.

Service Life Evaluation Considering Height of RC Structures and Distance from Sea Shore (RC 구조물 높이와 해안가 거리를 고려한 염해에 대한 내구수명 평가)

  • Oh, Kyeong-Seok;Kim, Young-Joon;Lee, Seong-Hee;Kwon, Sung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.172-179
    • /
    • 2016
  • For an evaluation of service life in RC(Reinforced Concrete) structures, deterministic method and probabilistic method considering random variables of design parameters are usually adopted. In the work, surface chloride contents which vary with distance from sea shore and height are investigated from the previous research literature surveys, and they are considered for service life estimation. Through the analysis, the probabilistic method shows much lower results, which is due to variations of design parameters and very low intended durability failure. In the deterministic method, the structures within 250m and higher than 60m are evaluated to be free from chloride attack. In the probabilistic method, those higher than 60m in all the region and higher than 40m and 250m from sea shore are evaluated to satisfy the service life.

Probabilistic Analysis of Repairing Cost Considering Random Variables of Durability Design Parameters for Chloride Attack (염해-내구성 설계 변수에 변동성에 따른 확률론적 보수비용 산정 분석)

  • Lee, Han-Seung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Repairing timing and the extended service life with repairing are very important for cost estimation during operation. Conventionally used model for repair cost shows a step-shaped cost elevation without consideration of variability of extended service life due to repairing. In the work, RC(Reinforced Concrete) Column is considered for probabilistic evaluation of repairing number and cost. Two mix proportions are prepared and chloride behavior is evaluated with quantitative exterior conditions. The repairing frequency and cost are investigated with varying service life and the extended service life with repairing which were derived from the chloride behavior analysis. The effect of COV(Coefficient of Variation) on repairing frequency is small but the 1st repairing timing is shown to be major parameter. The probabilistic model for repairing cost is capable of reducing the number of repairing with changing the intended service life unlike deterministic model of repairing cost since it can provide continuous repair cost with time.

Study of Reliability Index in Concrete Structures Considering Coefficient of Variation of Degradation Factors (열화인자별 변동계수 변화에 따른 콘크리트 구조물의 신뢰성 지수에 관한 연구)

  • Kim, Joo-Hyung;Jung, Sang-Hwa;Kim, Tae-Sang;Lee, Kwang-Myoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.541-544
    • /
    • 2008
  • Recently, a variety of researches has been carried out to estimate the reliability-based analysis and design method of concrete structures and is attracted by probabilistic-based durability analysis/method of concrete structures subjected to chloride containing environment using MCS (Monte Carlo Simulation). Probabilistic-based durability analysis/method was proposed by lots of researches, but there is the lack of data for degradation factors for the calculation of probability distribution. The reliability based durability analysis method represents that the service life and reliability index varies with the probability distribution and coefficient of variation of each factor. Therefore, in this paper, the importance of experiment data for the degradation factors is confirmed and the study of reliability index in RC structures under chloride attack environments is performed considering the variation coefficient of degradation factors.

  • PDF

A Study on the Methodology to Ensure Long-Term Durability of Low and Intermediate Level Radwaste Disposal Concrete Structure (${\cdot}$저준위 방사성폐기물 처분 콘크리트 구조물의 장기적 내구성 확보를 위한 방안 검토)

  • Kim Young-Ki;Lee Byung-Sik;Lee Yong-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.211-220
    • /
    • 2005
  • The concrete structure is being considered for the main engineered barrier of low and intermediate level radwaste disposal facility. Concrete of low permeability can minimize infiltration of water and effectively prevent release of nuclide to ecosystem. But if concrete degrades, structural stability of disposal structure will decrease while permeability increase, resulting in increased possibility of nuclide release due to water infiltration. Therefore disposal concrete structure degradation shall be minimized to maintain capacity of nuclide isolation. The typical causes of concrete structure degradation are sulfide attack, reinforcement corrosion due to chloride attack, leaching of calcium hydroxide, alkali-aggregate reaction and repeated freezing-thawing. The common cause of these degradation processes is infiltration of water or adverse chemicals into concrete. Based on the study of these degradation characteristics and mechanisms of concrete structure, the methodology of design and service life evaluation of concrete structure as an engineered barrier are reviewed to ensure its long-term durability.

  • PDF

Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete (장기 재령 GGBFS 콘크리트의 염화물 확산 거동 평가 및 확률론적 염해 내구수명 해석)

  • Yoon, Yong-Sik;Kim, Tae-Hoon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.47-56
    • /
    • 2020
  • In this study, three levels of W/B(Water to Binder) ratio (0.37, 0.42, 0.47) and substitution ratio of GGBFS (Ground Granulated Blast Furnace Slag) rate (0 %, 30 %, 50 %) were considered to perform RCPT (Rapid Chloride Diffusion Test) at the 1,095 aged day. Accelerated chloride diffusion coefficient and passed charge of each concrete mixture were assessed according to Tang's method and ASTM C 1202, and improving behaviors of durability performance with increasing aged days are analyzed based on the test results of previous aged days from the preceding study. As the age of concrete increases, the passed charge and diffusion coefficient have been significantly reduced, and especially the concrete specimens containing GGBFS showed a significantly more reduction than OPC(Ordinary Portland Cement) concrete specimen by latent hydraulic activity. In the case of OPC concrete's results of passed charge, at the 1,095 days, two of them were still in the "Moderate" class. So, if only OPC is used as the binder of concrete, the resistance performance for chloride attack is weak. In this study, the time-parameters (m) were derived based on the results of the accelerated chloride diffusion coefficient, and the deterministic and probabilistic analysis for service life were performed by assuming the design variable as a probability function. For probabilistic service life analysis, durability failure probabilities were calculated using Monte Carlo Simulation (MCS) to evaluate service life. The service life of probabilistic method were lower than that of deterministic method, since the target value of PDF (Probability of Durability Failure) was set very low at 10 %. If the target value of PDF suitable for the purpose of using structure can be set and proper variability can be considered for each design variable, it is believed that more economical durability design can be made.

Evaluation of Apparent Chloride Diffusion Coefficient and Surface Chloride Contents of FA concrete Exposed Splash zone Considering Crack Width (비말 지역에 노출된 FA 콘크리트의 균열을 고려한 겉보기 염화물 확산계수 및 표면 염화물량 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.18-25
    • /
    • 2019
  • The cracks occurred during service life of concrete structure should be considered in durability design, because of the concrete's material property which is weak in tensile strength. In this study, the fly ash concrete mixtures considering 2 levels of strength is designed and outdoor exposure tests are conducted for those concrete specimens. The exposure environment is set to a splash zone, and in order to evaluate the effect of crack width on the behavior of chloride diffusion, the crack width of up to 1.0 mm is generated at intervals of 0.1 mm at each concrete mixture. After that, apparent chloride diffusion coefficient and surface chloride contents are deducted considering 3 levels of exposure periods(180 days, 365 days, 730 days). The diffusion coefficients of two types of mixture increase with the increase of crack width, and the diffusion coefficients decrease with the increase of exposure periods. In addition, the effect of the crack width on the diffusion coefficient is reduced as the exposure periods increase, which is attributed to the extra hydrate by chloride ion reducing the diffusivity of concrete. The behavior of the surface chloride contents does not significantly change by the increase in crack width, compared to the behavior of apparent chloride diffusion coefficient. Also, In the high strength FA concrete mixture, the surface chloride contents are 78.9 % ~ 90.7 % than the normal FA strength concrete mixture. Thus, Surface chloride contents have correlation with the strength of concrete.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

The Analysis of Bridge Deck Considering Relative Girder Deflection (거더간 상대처짐을 고려한 바닥판의 해석)

  • 유철수;강영종;최진유;양기재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.141-148
    • /
    • 1998
  • The chloride attack of the top mat of reinforcing bars is a major cause of deterioration of comcrete deck of plate girder bridges. This is caused by a current design method which requires a top mat of reinforcing bars to resist a negative bending moment in bridge decks. In recently, empirical evidence has indicated that the top transverse reinforcing bars can patially or fully be eliminated without jeopardizing the structural integrity of a deck. So, one of the most efficient way to increase durability of concrete deck of bridges is the development of new design method that reduce or eliminate the top mat reinforcing bars, mad it is possible by the exact analysis that considering the negative bending moment reducing effect which introduced by relative deflection of plate girders. In this study, we develop the new bridge deck analysis method that considered the effect of relative girder deflection by applying the principles of slope deflection method of frames, and that is fine tuned with results of finite element analysis. This new approach evaluate a bending moment in a deck based on the effect of relative girder deflection as well as the magnitude of wheel loads, the girder spacing and stiffness, deck stiffness and the span length

  • PDF