DOI QR코드

DOI QR Code

Evaluation of Apparent Chloride Diffusion Coefficient and Surface Chloride Contents of FA concrete Exposed Splash zone Considering Crack Width

비말 지역에 노출된 FA 콘크리트의 균열을 고려한 겉보기 염화물 확산계수 및 표면 염화물량 평가

  • 윤용식 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2019.04.09
  • Accepted : 2019.10.29
  • Published : 2019.11.01

Abstract

The cracks occurred during service life of concrete structure should be considered in durability design, because of the concrete's material property which is weak in tensile strength. In this study, the fly ash concrete mixtures considering 2 levels of strength is designed and outdoor exposure tests are conducted for those concrete specimens. The exposure environment is set to a splash zone, and in order to evaluate the effect of crack width on the behavior of chloride diffusion, the crack width of up to 1.0 mm is generated at intervals of 0.1 mm at each concrete mixture. After that, apparent chloride diffusion coefficient and surface chloride contents are deducted considering 3 levels of exposure periods(180 days, 365 days, 730 days). The diffusion coefficients of two types of mixture increase with the increase of crack width, and the diffusion coefficients decrease with the increase of exposure periods. In addition, the effect of the crack width on the diffusion coefficient is reduced as the exposure periods increase, which is attributed to the extra hydrate by chloride ion reducing the diffusivity of concrete. The behavior of the surface chloride contents does not significantly change by the increase in crack width, compared to the behavior of apparent chloride diffusion coefficient. Also, In the high strength FA concrete mixture, the surface chloride contents are 78.9 % ~ 90.7 % than the normal FA strength concrete mixture. Thus, Surface chloride contents have correlation with the strength of concrete.

콘크리트는 인장력에 취약한 재료적 특징을 갖기 때문에 콘크리트 구조물의 사용기간 중에 발생하는 균열은 내구성능 평가 시 필히 고려되어야 한다. 본 연구에서는 두 수준의 강도를 고려한 플라이애시 콘크리트를 배합하여 옥외 폭로 시험을 실시하였다. 노출 환경은 비말 조건으로 설정하였으며, 균열 폭이 콘크리트의 염화물 확산 거동에 미치는 영향을 평가하고자 각 배합의 시편에 0.1 mm 간격으로 최대 1.0 mm 까지의 균열 폭을 야기하였다. 그 후 3가지 수준의 노출기간(180일, 365일, 730일)을 고려하여 겉보기 염화물 확산계수 및 표면 염화물량을 산출하였다. 균열 폭의 증가에 따라 두 배합 모두 확산계수가 증가하였으며, 노출기간이 증가함에 따라 확산계수는 감소하였다. 또한 노출 기간이 증가함에 따라 균열 폭이 확산계수에 미치는 영향이 감소하였는데, 이는 염소 이온 기반 수화물이 콘크리트의 확산성을 저감시키기 때문으로 사료된다. 표면 염화물량 거동은 겉보기 염화물 확산계수 거동 대비 균열 폭의 증가에 따른 뚜렷한 변화 거동이 발생하지 않았으며, 고강도 배합에서 보통 강도 배합 대비 78.9 % ~ 90.7 %의 표면 염화물량을 나타내어 강도와의 상관관계를 갖는 것으로 판단된다.

Keywords

References

  1. Metha, P. K., and Monteiro, P. M. (1993), Concrete-Structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 1-7.
  2. Moon, H. Y., Lee, S. T., Kim, H. S., and Kim, J. C. (2000), Resistance to Sulfate and Seawater Attack of Cement Mortars, Journal of The Korean Society of Civil Engineers, 20(3A), 473-482.
  3. Park, S. S., and Kim, M. W. (2013), Evaluate the Concrete mix by Type Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Cyclic Wet and Dry Condition, Journal of the Korean Recycled Construction Resources Institute, 1(3), 211-218. https://doi.org/10.14190/JRCR.2013.1.3.211
  4. Yoon, Y.S ., Ryu, H. S., Lim, H. S., Koh, K. T., Kim, J. S., and Kwon, S. J. (2018) Effect of grout conditions and tendon location on corrosion pattern in PS tendon in grout, Construction and Building Materials, 186, 1005-1015. https://doi.org/10.1016/j.conbuildmat.2018.08.023
  5. Korea Expressway Corporation. (2002), Establishment of Management and Maintenance of Concrete Structure for Durability.
  6. JSCE, (2007), Survey of corrosion cost in japan, Committee on Cost of Corrosion in Japan.
  7. Lee, B. K., Kim, G. Y., Kim, G. T., Shin, K. S,. and Nam, J. S. (2017), Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure, Journal of the Korea Concrete Institute, 29(3), 299-306. https://doi.org/10.4334/JKCI.2017.29.3.299
  8. Ryu, H. S., Park, K. T., Yoon, Y. S., and Kwon, S. J. (2018), Resistance to Chloride Attack of FRP Hybrid Bar After Freezing and Thawing Action, Journal of the Korean Recycled Construction Resources Institute, 6(1), 59-65. https://doi.org/10.14190/JRCR.2018.6.1.59
  9. Kim, J. H., Jeong, J. Y., Jang, S. Y., Jeong, S. H., and Kim, S. I. (2015), Strength Development and Durability of High-Strength High-Volume GGBFS Concrete, Journal of the Korean Recycled Construction Resources Institute, 3(3), 261-267. https://doi.org/10.14190/JRCR.2015.3.3.261
  10. Nath, P., and Sarker, P. (2011), Effect of Fly Ash on the Durability Properties of High Strength Concrete, Procedia Engineering, 14(2011), 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
  11. Yang, K. H., Mun, J. H., Yoon, Y. S., and Kwon, S. J. (2018a), Effects of loading conditions and cold joint on service life against chloride ingress, Computers and Concrete, 22(3), 319-326. https://doi.org/10.12989/CAC.2018.22.3.319
  12. Yang, H. M., Lee, H. S., Yang, K. H., Ismail, M. A., and Kwon, S. J. (2018b), Time and cold joint effect on chloride diffusion in concrete containing GGBFS under various loading conditions, Construction and Building Materials, 167, 739-748. https://doi.org/10.1016/j.conbuildmat.2018.02.093
  13. Kwon, S. O., Bae, S. H., Lee, H. J., and Jung, S. H. (2014), Characteristics for Reinforcement Corrosion and Chloride Ion Diffusion of High Volume Fly Ash Concrete, Journal of the Korean Recycled Construction Resources Institute, 2(1), 34-39. https://doi.org/10.14190/JRCR.2014.2.1.034
  14. KS L 5405. (2018), Fly Ash, KSSN, 1-8.
  15. Bilodeau, A., Malhotra, V. M., and Golden, D. M. (1998), Mechanical Properties and Durability of Structural Lightweight Concrete Incorporating High-Volumes of Fly Ash, ACI International, 178, 449-474.
  16. Lee, S. S., Rho, H. N., and Song, H. Y. (2008), An Experimental Study on the Quality Properties of Mortar Using High Volume Fly-ash, Journal of the Architectural Institute of Korea Structure & Construction, 24(8), 171-178.
  17. Kim, J., McCarter, W. J., Suryanto, B., Nanukuttan, S., Basheer, P. A. M., and Chrisp, T. M. (2016), Chloride ingress into marine exposed concrete: A comparison of empirical-and physically-based models, Cement and Concrete Composites, 72, 133-145. https://doi.org/10.1016/j.cemconcomp.2016.06.002
  18. Thomas, M. D, A., and Bentz, E. C. (2002), Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides(Life365 Manual), SFA.
  19. Kouloumbi, N., Batis, G., and Malami, C. H. (1994), The anticorrosive effect of fly ash, slag and a Greek pozzolan in reinforced concrete, Cement and Concrete Composites, 16(4), 253-260. https://doi.org/10.1016/0958-9465(94)90037-X
  20. Thomas, M. D. A., and Bamforth, P. B. (1999), Modelling chloride diffusion in concrete: Effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  21. Glasser, F. P., Marchand, J., and Samson, E. (2008), Durability of concrete-degradation phenomena involving detrimental chemical reactions, Cement and Concrete Research, 38(2), 226-246. https://doi.org/10.1016/j.cemconres.2007.09.015
  22. Song, H. W., Lee, C. H., and Lee, K. C. (2008), A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(5), 133-142.
  23. Jung, S. H., Ryu, H. S., Karthick, S., and Kwon, S. J. (2018), Time and Crack Effect on Chloride Diffusion for Concrete with Fly Ash, International Journal of Concrete Structures and Materials, 12(1), 1-10. https://doi.org/10.1186/s40069-018-0237-8