• Title/Summary/Keyword: chitosan polymer

Search Result 214, Processing Time 0.026 seconds

Preparation and characterization of a thermal responsive of poly(N-isopropylacrylamide)/chitosan/gelatin hydrogels

  • Baghaei, Shaghayegh;Khorasani, Mohammad T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.105-116
    • /
    • 2014
  • Synthesis of interpenetrating polymer network (IPN) of chitosan-gelatin (Cs-Ge) (as a primary network) and N-isopropylacrylamide (NIPAAm) monomer (as the secondary network) was carried out with different ratio. Its structure was characterized by FT-IR, which indicated that the IPN was formed. The memberanes were studied by swelling, weight loss with time. The interior morphology of the IPN hydrogels was revealed by scanning electron microscopy (SEM); the IPN hydrogels showed a interpenetrated network of NIPAAm/chitosan has layers with more minute stoma and canals compared to interpenetrated network of NIPAAm/gelatin. Lower critical solution temperature (LCST), equilibrium swelling ratio (ESR) and deswelling kinetics were measured. The DSC results noticed that LCST of IPN hydrogels with different ratio of Cs/Ge/PNIPAAm are around $33{\pm}2^{\circ}C$. The ESR obtained results showed that with a ratio of Cs/Ge/NIPAAm: 1/1/6, the swelling ratio increased drastically from room temperature to $36^{\circ}C$ but with a ratio of Cs/Ge/PNIPAAm: 1/3/6, decrease significantly at the same condition. Therefore the hydrogels have been changed from a hydrophilic structure to a hydrophobic structure. Furthermore with an increase in temperature from room to the LCST, the ESR of IPN with higher concentration of (PNIPAAm) and (Ge) decreases but de-swelling kinetics of them are faster. Due to the suitable and different kinetics of de-swelling and the equilibrium swelling ratio (ESR) in various proportions, and because of the morphology inside the mass which confirms other tests, these hydrogels are very appropriate as a smart thermosensitive hydrogels with rapid response.

Thermomechanical Characteristics of Poly(vinyl alcohol)/Chitosan Films and Its Blend Hydrogels (폴리(비닐 알코올)/키토산 블렌드와 블렌드 수화젤의 열특성)

  • Park Jun Seo;Park Jang Woo;Kim Byung Ho
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.183-189
    • /
    • 2005
  • Films of poly(vinyl alcohol)(PVA)/chitosan blends and its blend hydrogels were prepared by the solution casting method. The state of miscibility of the blends and blend hydrogels were examined over the entire composition range by differential scanning carorimetry (DSC), thermogravimetry (TGA), and dynamic mechanical analysis (DMA). DSC analysis shows the depression of melting point of PVA in the blends and the decrease of crystallization temperature of PVA in the blends were observed with increasing chitosan content in the blends. TGA analysis indicates that chitosan was thermally more stable than PVA and the thermal stability of PVA in the blends was higher than that of pure PVA, due to some interactions between two component polymers in the blend. The glass transition temperature $(T_g)$ of the chitosan and of PVA, measured by DMA, were at 160 and $90^{\circ}C$, respectively. The $T_g$ of the blends was changed with the content of chitosan in the blends. The results of thermal and viscoelastic analysis indicate some miscibility between component polymers in the blend exists. Moisture and cross linking in the blend and blend hydrogel, which strongly change thermal and physical properties of hydrophilic polymers, affected the miscibility of chitosan and PVA to a small extent.

Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface (코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선)

  • Kim, Dae Hwan;Kum, Chang Hun
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.

Preparation of Sulfobetaine Chitosan, Silk Blended Films, and Their Properties (설포베타인 키토산의 실크 블렌드 필름의 제조 및 그들의 성질)

  • Koo, Ja-Sung;Cha, Jae-Ryung;Oh, Se-Heang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • Water-soluble sulfobetaine chitosan (SCs) was prepared for a blending film with Bombyx mori silk fibroin (SF) by reacting chitosan with 1,3-propanesultone. A series of SF/SCs blended films were successfully prepared by mixing aqueous solutions of B. mori SF and SCs. The SF/SCs blended films were examined through spectroscopic and thermal analysis to determine the morphological changes of SF in the SCs. The effects of the SF/SCs blend ratios on physical and mechanical properties were investigated to discover the feasibility of using these films as biomedical materials such as artificial skin and wound dressing. X-ray analysis showed good compatibility between the two biopolymers. The in vitro degradation behavior of the SF/SCs blended films was systematically investigated for up to 8 weeks in phosphate buffered saline solution at $37^{\circ}C$ and showed a mass loss of 46.4% after 8 weeks. All films showed no cytotoxicity by MC3T3-E1 assay. After 3 days of culture, the relative cell number on all the SF/SCs films was slightly lower than that of an optimized tissue culture plastic.

Effect of Polymer, Calcium, Perlite and Chitosan in Soil Organic Amendment on Growth in Perennial Ryegrass (유기질 토양개량재에서 고분자 중합체, 칼슘, 펄라이트 및 키토산이 퍼레니얼 라이그래스의 생장에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.24-34
    • /
    • 2012
  • The study was carried out to investigate the effects of polymer, calcium, perlite and chitosan on the growth of perennial ryegrass (Lolium perenne L., PR) and to provide a basic information needed for their practical application when establishing garden, parks, athletic field and golf courses with these materials. A total of 24 treatment combinations were applied in the study. Treatments were made of water-swelling polymer (WSP), calcium, perlite and chitosan mixed in soil organic amendment (SOA). Germination rate, turfgrass coverage, turfgrass density and top growth were evaluated in PR under greenhouse conditions. Significant differences were observed for these growth characteristics among the treatments. Turfgrass density and plant height, evaluated on a weekly basis, varied with time after seeding. A proper mixing rate of WSP was considered to be lower 3% for the growth of PR with an exception of being below 6% for turfgrass density. Germination rate and early survival capacity were greatly influenced by calcium and chitosan among the elements of calcium, perlite, and chitosan. But there was little effect by perlite. Calcium and chitosan were most effective one for turfgrass density and coverage, respectively. Top leaf-growth was influenced by all three elements, but the greatest effect was highly linked with calcium. Chitosan was very effective in early germination and vertical leaf growth, as compared with the others. Future studies are required for measuring the effect of WSP, calcium, perlite and chitosan on the turf growth characteristics in root zone mixtures of sand+SOA before a practical field use.

Antibiotic Activity of PVA Blending Films Using Chitosan (키토산을 이용한 PVA 블랜드 필름의 항균특성)

  • Kim, Kyung-Min;Kong, Seung-Dae;Yoon, Cheol-Hun;Kim, Yong-Yeul;Lee, Han-Seob
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.198-202
    • /
    • 2000
  • PVA blend films were prepared by solution blending method for the purpose of useful antibiotic polymers. Characteristics properties of blending films such as elongation and tensile strength were determined. Tensile strength and elongation were rapidly reduced as increasing the blending ratio of natural polymer. Blend films were found that phase separation was occured as more than 25wt% increasing the blend ratio of chitosan. Also, The antibiotics of blend films were examined against gram(+) and gram(-) by disk susceptibility test. As a result, kind of blending films to show the highest antibiotics was chitosan 20wt% and the selectivity of mold strain was observed.

In Vitro Cellular Uptake and Cytotoxicity of Paclitaxel-Loaded Glycol Chitosan Self-Assembled Nanoparticles

  • Park, Ji-Sun;Cho, Yong-Woo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.513-519
    • /
    • 2007
  • Self-assembled nanoparticles have great potential to act as vehicles for hydrophobic drug delivery. Understanding nanoparticle cellular internalization is essential for designing drugs intended for intracellular delivery. Here, the endocytosis and exocytosis of fluorescein isothiocyanate (FITC)-conjugated glycol chitosan (FGC) self-assembled nanoparticles were investigated by flow cytometry and confocal microscopy. The cellular internalization of FGC nanoparticles was initiated by nonspecific interactions between nanoparticles and cell membranes. Although adsorptive endocytosis of the nanoparticles occurred quickly, significant amounts of FGC nanoparticles were exocytosed, particularly in the early stage of endocytosis. The amount of exocytosed nanoparticles was dependent on the pre-incubation time with nanoparticles, suggesting that exocytosis is dependent on the progress of endocytosis. FGC nanoparticles internalized by adsorptive endocytosis were distributed in the cytoplasm, but not in the nucleus. In vitro cell cycle analysis demonstrated that FGC nanoparticles delivered paclitaxel into the cytoplasm and were effective in arresting cancer cell growth.

Antimicrobial effect of chitosan oligosaccharides, prepared under ultrafiltration membrane bioreactor, against Vibrio spp. causing fish diseases

  • Lee, Jehee;Jeon, You-Jin;Heo, Moon-Soo;Lee, Ki-Wan;Song, Choon-Bok;Yeo, In-Kyo;Yang, Byung-Gyoo;Kim, Se-Kwon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.151-152
    • /
    • 2001
  • Chitin, a polymer of N-acetylglucosamine ($\beta$-1,4 linked 2-acetamido-D-glucose), is a cellulose-like biopolymer present richly in the exoskeleton of crustaceans and in cell walls of fungi, insects and yeast. Chitosan is derived from chitin by deacetylation, to different degrees, in the presence of alkali. [l]. Recent studies for chitin and chitosan have been concentrated in bioactivities such as antitumor activity, immuno-enhancing effects, enhancing protective effects against infection with some pathogens in mice, and antimicrobial activeity [2]. (omitted)

  • PDF

Preparation and Biodegradation of Biodegradable Film Using Chitosan and Algin (키토산과 알긴을 이용한 생분해성 필름의 제조와 생체분해)

  • Oh, Se-Young;Yoon, Cheol-Hun;Lee, Ki-Chang;Park, Jong-Joo;Hwang, Seong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.67-73
    • /
    • 1999
  • Chitosan and Algin are known as a natural polymers. Biodegradable films were prepared by solution blend method in the weight ratio of natural polymer(low, medium, high-Chitosan, Algin) for the purpose of useful bioimplants. The possibility of bioimplants, which were prepared from natural polymers as a skin substitute and food wrapping materials were evaluated by measuring biodegradability. This biodegradable films were inserted in the back of rats and their biodegradability was investigated by hematological change evaluation as a function of time to biotransformation. It was found that these values of biodegradable films give some good results with short period test.

Rheological Characteristics of Chitosan-Catechol Hydrogel attributed Catechol Content (키토산-카테콜 하이드로겔의 카테콜 함유량에 따른 유변학적 특성 분석)

  • Bang, Eun Ji;Ko, Haye Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.249-250
    • /
    • 2022
  • In this study, two types of chitosan-catechol polymers (a-CP and b-CP) were synthesized and mixed with polyvinyl alcohol (PVA) and sodium tetraborate decahydrate (Na2B4O7·10H2O) to form hydrogels. The characteristics of these polymers were tuned by varying the pH during their syntheses, and their structures were characterized using nuclear magnetic resonance spectroscopy and ultraviolet-visible spectroscopy. Rheological and self-healing properties of hydrogels were evaluated. As a result, the viscoelastic modulus was improved due to the increased functional group content, and the self-healing property was excellent regardless of the functional group content.

  • PDF