DOI QR코드

DOI QR Code

Preparation of Sulfobetaine Chitosan, Silk Blended Films, and Their Properties

설포베타인 키토산의 실크 블렌드 필름의 제조 및 그들의 성질

  • Koo, Ja-Sung (Department of Nanobiomedical Science, Dankook University Graduate School) ;
  • Cha, Jae-Ryung (Department of Nanobiomedical Science, Dankook University Graduate School) ;
  • Oh, Se-Heang (Department of Nanobiomedical Science, Dankook University Graduate School) ;
  • Gong, Myoung-Seon (Department of Nanobiomedical Science, Dankook University Graduate School)
  • 구자성 (단국대학교 나노바이오의과학과) ;
  • 차재령 (단국대학교 나노바이오의과학과) ;
  • 오세행 (단국대학교 나노바이오의과학과) ;
  • 공명선 (단국대학교 나노바이오의과학과)
  • Received : 2013.08.20
  • Accepted : 2013.10.07
  • Published : 2014.01.25

Abstract

Water-soluble sulfobetaine chitosan (SCs) was prepared for a blending film with Bombyx mori silk fibroin (SF) by reacting chitosan with 1,3-propanesultone. A series of SF/SCs blended films were successfully prepared by mixing aqueous solutions of B. mori SF and SCs. The SF/SCs blended films were examined through spectroscopic and thermal analysis to determine the morphological changes of SF in the SCs. The effects of the SF/SCs blend ratios on physical and mechanical properties were investigated to discover the feasibility of using these films as biomedical materials such as artificial skin and wound dressing. X-ray analysis showed good compatibility between the two biopolymers. The in vitro degradation behavior of the SF/SCs blended films was systematically investigated for up to 8 weeks in phosphate buffered saline solution at $37^{\circ}C$ and showed a mass loss of 46.4% after 8 weeks. All films showed no cytotoxicity by MC3T3-E1 assay. After 3 days of culture, the relative cell number on all the SF/SCs films was slightly lower than that of an optimized tissue culture plastic.

Bombyx mori silk fibroin(SF)과 블렌드 필름을 만들기 위하여 키토산에 1,3-propanesultone을 반응시켜 수용성 sulfobetaine chitosan(SCs)을 제조하였다. 여러 가지 비율의 SF/SCs 블렌드 필름을 B. mori SF와 SCs의 수용액을 혼합하여 제조하였다. 수용액으로부터 얻어진 SF/SCs 블렌드 필름의 구조와 형태 변화는 분광학적 및 열적 분석을 통해 규명하였다. SF와 SCs의 혼합 비율에 따른 인공 피부나 화상치료 목적의 비이오재료로서의 물리적 및 기계적 성질에 미치는 영향을 조사하였다. X-선 분석으로 두 생체고분자 사이에 좋은 친화성을 보여주고 있음을 알 수 있었으며 기계적 성질도 SCs의 함량이 증가하면 크게 증가하였다. $37^{\circ}C$에서 phosphate buffered saline solution 용액 중에서 in vitro 분해 실험을 8주 동안 시행한 결과 46.4%가 분해됨을 알 수 있었다. MC3T3-E1 세포에 의한 독성 실험 결과 무독성을 나타내 주었으며, 3일의 배양 후 SF/SCs 필름의 상대 세포 수는 최적화된 tissue culture plastic보다 약간 낮게 나타남을 알 수 있었다.

Keywords

References

  1. Q. Lv and Q. L. Feng, J. Mater. Sci. Mater. Med., 17, 1349 (2006). https://doi.org/10.1007/s10856-006-0610-z
  2. G. Y. Lu, L. J. Kong, B. Y. Sheng, G. Wang, Y. D. Gong, and X. F. Zhang, Eur. Polym. J., 43, 3807 (2007). https://doi.org/10.1016/j.eurpolymj.2007.06.016
  3. H. Y. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, J. Appl. Polym. Sci., 80, 928 (2001). https://doi.org/10.1002/app.1172
  4. X. Chen, W. Li, and T. Yu, J. Polym. Sci. Polym. Phys. Ed., 35, 2293 (1997). https://doi.org/10.1002/(SICI)1099-0488(199710)35:14<2293::AID-POLB9>3.0.CO;2-X
  5. C. J. Park, K. Y. Lee, W. S. Ha, and S. Y. Park, J. Appl. Polym. Sci., 74, 2571 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991209)74:11<2571::AID-APP2>3.0.CO;2-A
  6. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003). https://doi.org/10.1016/S0142-9612(02)00353-8
  7. Y. Cao and B. Wang, Inter. J. Mol. Sci., 10, 1514 (2009). https://doi.org/10.3390/ijms10041514
  8. I. Dal Pra, A. Chiarini, A. Boschi, G. Freddi, and U. Armato, Inter. J. Mol. Sci., 18, 241 (2006).
  9. T. L. Liu, J. C. Miao, W. H. Sheng, Y. F. Xie, Q. Huang, Y. B. Shan, and J. C. Yang, J. Zhejiang University B, 11, 10 (2010). https://doi.org/10.1631/jzus.B0900163
  10. H. Y. Kweon, I. C. Um, and Y. H. Park, Polymer, 42, 6651 (2001). https://doi.org/10.1016/S0032-3861(01)00104-5
  11. G. L. Lones, A. Motta, M. J. Marshall, A. J. El Haj, and S. H. Cartmell, Biomaterials, 30, 5376 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.028
  12. Y. Kawahara, J. Seric. Sci. Jpn., 62, 272-5 (1993).
  13. N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Biophys. Res. Commun., 208, 511 (1995). https://doi.org/10.1006/bbrc.1995.1368
  14. W. L. Teng, E. Khor, T. K. Tan, L. Y. Lim, and S. C. Tan, Carbohyd. Res., 332, 305 (2001). https://doi.org/10.1016/S0008-6215(01)00084-2
  15. R. Jayakumar, N. Nwe, S. Tokura, and H. Tamura, Int. J. Biol. Macromol., 40, 175 (2007). https://doi.org/10.1016/j.ijbiomac.2006.06.021
  16. R. Jayakumar, M. Prabaharan, R. L. Reis, and J. F. Mano, Carbohyd. Polym., 62, 142 (2005). https://doi.org/10.1016/j.carbpol.2005.07.017
  17. R. Jayakumar, R. L. Reis, and J. F. Mano, J. Bioact. Compat. Polym., 21, 327 (2006). https://doi.org/10.1177/0883911506066929
  18. K. Kondo, S. Nakagawa, M. Matsumoto, T. Yamashita, and I. Furukawa, J. Chem. Eng. Jpn., 20, 846 (1997).
  19. H. Tsai, Y. Wang, J. Lin, and W. Lien, J. Appl. Polym. Sci., 116, 1686 (2010).
  20. H. Y. Kweon and Y. H. Park, J. Appl. Polym. Sci., 73, 2887 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2887::AID-APP12>3.0.CO;2-I
  21. G. Freddi, P. Monti, M. Nagura, Y. Gotoh, and M. Tsukada, J. Polym. Sci. Polym. Phys. Ed., 35, 841 (1997). https://doi.org/10.1002/(SICI)1099-0488(19970415)35:5<841::AID-POLB13>3.0.CO;2-A
  22. J. M. Nieto, C. Peniche-Covas, and G. Padron, Thermochim. Acta, 176, 63 (1991). https://doi.org/10.1016/0040-6031(91)80260-P
  23. M. Geoghegan and G. Krausch, Prog. Polym. Sci., 28, 261 (2003). https://doi.org/10.1016/S0079-6700(02)00080-1
  24. Z. She, B. Zhang, C. Jin, Q. Feng, and Y. Xu, Polym. Degrad. Stabil., 93, 1316 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.04.001