• Title/Summary/Keyword: chiral amines

Search Result 13, Processing Time 0.025 seconds

Synthesis of Chiral Azophenolic Pyridino-18-Crown-6 Ether and Its Enantiomeric Recognition toward Chiral Primary Amines

  • Kim, Jae-kon;Song, Su-Hee;Kim, Jae-Hong;Kim, Tae-Hyun;Kim, Ha-suck;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1577-1580
    • /
    • 2006
  • The article reports the synthesis and enantiomeric recognition of a new chiral azophenolic pyridino-18-crown-6 ether, (S,S)-6, possessing diphenyl groups as chiral barriers. The association constants for the enantiomeric recognition of chiral primary amines (7-12) using chiral azophenolic pyridino-18-crown-6 ether, (S,S)-6, were determined by UV-visible titration method in acetonitrile at $25{^{\circ}C}$.

Transaminases for Green Chemistry: Recent Progress and Future Prospects

  • Shreya Pandya;Akshaya Gupte
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.333-352
    • /
    • 2023
  • Transaminase represents the most important biocatalysts used for the synthesis of chiral amines due to their stereoselectivity. They allow asymmetric synthesis with high yields and enantioselectivity from their corresponding ketones. Due to their environmentally friendly access for the preparation of chiral amines, they have attracted growing attention in recent times. Thus, the production of chiral compounds by transaminase catalysed reactions is considered as an important application in synthetic organic chemistry. Therefore, transaminase is considered to be an important enzyme in the pharmaceutical and chemical industries. ω-Transaminase holds great potential because of its wide substrate specificity thus making it a suitable enzyme to be used at an industrial scale. This review highlights the reaction mechanism, classification, substrate specificity, and biochemical properties. The review also showcases the application of ω-transaminase in organic chemistry with a focus on the production of active pharmaceutical ingredients (APIs).

Effect of Mobile Phase Additive on Enantiomer Resolution for Chiral Amines on Polysaccharide-derived Chiral Stationary Phases by High Performance Liquid Chromatography (고성능 액체크로마토그래피의 다당유도체를 기초로 한 키랄 고정상에서 이동상 첨가제가 키랄 아민의 광학분리에 미치는 영향)

  • Paik, Man-Jeong;Yoon, Hye-Ran;Lee, Wonjae
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.205-209
    • /
    • 2014
  • Chromatographic enantiomer resolution of chiral amines was performed on several covalently immobilized and coated chiral stationary phases (CSPs) based on polysaccharide derivatives under the mobile phase conditions containing base or acid or acid/base additive. The chromatographic parameters including separation factors and capacity factors were greatly influenced by the nature of the mobile phase containing base or acid or salt additive as well as the used CSPs. When 0.05% triethylamine/0.05% trifluoroacetic acid as an additive in the mobile phase was used on all CSPs in this study, the greatest enantiomer resolution was observed except for Chiralpak AD. Also, it was shown that the change of base additive into acid or salt in the mobile phase may directly affect chiral recognition mechanisms between the chiral selectors and analytes occurring during enantiomer separation, resulting in the change of elution orders.

Investigation of Enantiomer Separation Using Chiral Crown Ethers as Chiral Selectors

  • Lee, Wonjae
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • A number of chiral selectors have been developed and applied for enantiomer separation of a variety of chiral compounds. Among these chiral selectors are chiral crown ethers, a class of synthetic host polyether molecules that bind protonated chiral primary amines with high selectivity and affinity. In this paper, two important chiral crown ethers as chiral selectors of bis-(1,1'-binaphthyl)-22-crown-6 and (18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) are focused. They have been widely used to resolve the enantiomers of chiral compounds containing a primary amino moiety using chiral stationary phases (CSPs) or chiral selectors by high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and so on in chirotechnology. Also, it was described that the commercially available covalent type HPLC CSPs derived from (+)- and (-)-18-C-6-TA have been developed and successfully applied for the resolution of various primary amino compounds including amino acids.

The Development and Application of Chirotechnology Using Chiral Crown Ethers for Enantiomer Separation (광학분리를 위한 키랄 크라운 에테르를 이용한 키랄공학의 개발과 응용)

  • Paik, Man-Jeong;Yun, Won-Nam;Lee, Won-Jae
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.199-206
    • /
    • 2012
  • Chiral crown ethers are synthetic macrocyclic polyethers that bind protonated chiral primary amines with high selectivity and affinity. They have been widely used to separate or distinguish the enantiomers of chiral compounds containing a primary amino moiety by high-performance liquid chromatography, capillary electrophoresis, and NMR spectroscopy. In this paper, two important chiral crown ethers including chiral binaphthyl unit and (18-crown-6)-2,3,11,12-tetracarboxylic acid as chiral selectors are focused. And several chiral resolution techniques and their applications in chirotechnology using these chiral crown ethers with related chiral recognition mechanism studies are reviewed. Especially, it was shown that the commercially available HPLC columns based on (18-crown-6)-2,3,11,12-tetracarboxylic acid have been developed and successfully applied for the resolution of various primary amino compounds including amino acids.

A Highly Stereoselective Reaction in Aminolysis of 3-Acyl-4-(S)-isopropyl-1,3-thiazolidine-2-thione with Racemic Amines (3-Acyl-4(S)-isopropyl-1,3-Thiazolidine-2-Thione과 라세미아민의 입체선택적인 반응)

  • Tae Myoung Jeong;Ki Hun Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.588-592
    • /
    • 1988
  • A chiral recognition was observed in aminolysis of 3-acyl-4(S)-isopropyl-1,3-thiazolidine-2-thione by racemic amine to give an optically active amide (S-excess) and amine (R-excess). This procedure can be applied to synthesis of macrocyclic diamide macrocyclic spermidine alkaloid, and peptide. The rate of this aminolysis is remarkably affected by steric surrounding; completion of reaction can be easily judged by the disappearance of the original yellow color of 4(S)-AITT. These features of the aminolysis suggested a potential recognition racemic amines by a chiral 4 (S)-AITT derivative. Thus 4 (S)-AITT was synthesized from 4 (S)-isopropyl-1, 3-thiazolidine-2-thione and carboxylic acids.

  • PDF

Anti-Selective Dihydroxylation Reactions of Monosubstituted and (E)-Ester Conjugated Allylic Amines by Bulky Alkyl Groups

  • Jeon, Jong-Ho;Kim, So-Hee;Lee, Jong-Hyup;Oh, Joon-Seok;Park, Doh-Yeon;Kim, Young-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1003-1008
    • /
    • 2009
  • The $O_sO_4$-catalyzed dihydroxylations of a monosubstituted allylic amine and $\gamma-amino-\alpha,\;\beta-unsaturated$ (E)-esters with bulky alkyl groups showed a high anti-selectivity. Since the acyclic conformation of N-acyloxy protected allylic amines was efficiently controlled by a bulky t-Bu or OBO ester group, the anti diastereoselectivity of >12.5:1 was obtained without applying a chiral reagent. The synthetic utility of the present method was demonstrated by a stereoselective and efficient synthesis of an $\alpha$-glucosidase inhibitor 15 from commercially available N-Cbz-L-serine 6 in 11 steps and 31% yield.

Enantioselective Hydrosilylation of Imines Catalyzed by Diamine-Zinc Complexes

  • Park, Bu-Mahn;Feng, Xinhui;Yun, Jae-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2960-2964
    • /
    • 2011
  • The efficient asymmetric hydrosilylation of imines in the presence of polymethylhydrosiloxane has been investigated by screening chiral diamine-zinc complexes. A series of chiral diamine ligands were prepared from optically pure 1,2-diphenyl-1,2-ethanediamine and screened for effectiveness. N-Benzylic substituents were required for high enantioselectivity; ligands with bulky groups or extra coordinating groups such as OH and S lowered the catalytic activity. The level of asymmetric induction was usually in >90% ee range for aromatic imine substrates. A linear correlation between the ee of the ligand and that of the product was observed, indicating the presence of a 1:1 ratio of ligand to metal coordination in the active catalytic complex.

Highly Efficient Microwave-assisted Aminolysis of Epoxides in Water

  • Zuo, Hua;Li, Zhu-Bo;Zhao, Bao-Xiang;Miao, Jun-Ying;Meng, Li-Juan;Jang, Ki-Wan;Ahn, Chul-Jin;Lee, Dong-Ha;Shin, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2965-2969
    • /
    • 2011
  • Highly efficient and rapid aminolysis of epoxides with various amines in water under microwave irradiation in the absence of catalyst was developed. Chiral ${\beta}$-amino alcohols were formed in a short time with excellent yields.