DOI QR코드

DOI QR Code

Highly Efficient Microwave-assisted Aminolysis of Epoxides in Water

  • Zuo, Hua (College of Pharmaceutical Sciences, Southwest University) ;
  • Li, Zhu-Bo (College of Pharmaceutical Sciences, Southwest University) ;
  • Zhao, Bao-Xiang (Institutes of Organic Chemistry and Developmental Biology, Shandong University) ;
  • Miao, Jun-Ying (Institutes of Organic Chemistry and Developmental Biology, Shandong University) ;
  • Meng, Li-Juan (Institutes of Organic Chemistry and Developmental Biology, Shandong University) ;
  • Jang, Ki-Wan (Departments of Chemistry & Physics, Changwon National University) ;
  • Ahn, Chul-Jin (Departments of Chemistry & Physics, Changwon National University) ;
  • Lee, Dong-Ha (Dongbu Advanced Research Institute, Dongbu Hannong Chemical Co., Ltd.) ;
  • Shin, Dong-Soo (Departments of Chemistry & Physics, Changwon National University)
  • Received : 2011.03.11
  • Accepted : 2011.04.01
  • Published : 2011.08.20

Abstract

Highly efficient and rapid aminolysis of epoxides with various amines in water under microwave irradiation in the absence of catalyst was developed. Chiral ${\beta}$-amino alcohols were formed in a short time with excellent yields.

Keywords

References

  1. Chng, B. L.; Ganesan, A. Bioorg. Med. Chem. Lett. 1997, 7, 1511. https://doi.org/10.1016/S0960-894X(97)00260-6
  2. Rogers, G. A.; Parsons, S. M.; Anderson, D. C.; Nilsson, L. M.; Bahr, B. A.; Kornreich, W. D.; Kaufman, R.; Jacobs, R. S.; Kirtman, B. J. Med. Chem. 1989, 32, 1217. https://doi.org/10.1021/jm00126a013
  3. Deyrup, J. A.; Moyer, C. L. J. Org. Chem. 1969, 34, 175. https://doi.org/10.1021/jo00838a038
  4. Smith, J. G. Synthesis 1984, 629.
  5. Chini, M.; Crotti, P.; Flippin, L. A.; Macchia, F. J. Org. Chem. 1991, 56, 7043. https://doi.org/10.1021/jo00025a018
  6. Chini, M.; Crotti, P.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron 1994, 35, 433. https://doi.org/10.1016/0040-4039(94)85073-9
  7. Beaton, M.; Gani, D. Tetrahedron Lett. 1998, 39, 8549. https://doi.org/10.1016/S0040-4039(98)01909-1
  8. Serrano, P.; Llebaria, A.; Delgado, A. J. Org. Chem. 2002, 67, 7165. https://doi.org/10.1021/jo0261146
  9. Olofsson, B.; Somfai, P. J. Org. Chem. 2002, 67, 8574. https://doi.org/10.1021/jo0262053
  10. Xue, W. M.; Kung, M. C.; Kozlov, A. I.; Popp, K. E.; Kung, H. H. Catal. Today 2003, 85, 219. https://doi.org/10.1016/S0920-5861(03)00389-4
  11. Pachon, L. D.; Gamez, P.; Van Brussel, J. J. M.; Reedijk, J. Tetrahedron Lett. 2003, 44, 6025. https://doi.org/10.1016/S0040-4039(03)01480-1
  12. Cepanec, I.; Litviae, M.; Mikuldas, H.; Bartolineie, A.; Vinkovie, V. Tetrahedron 2003, 59, 2435. https://doi.org/10.1016/S0040-4020(03)00292-8
  13. Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. J. Org. Chem. 2004, 69, 7745. https://doi.org/10.1021/jo049335f
  14. Ollevier, T.; Lavie-Compin, G. Tetrahedron Lett. 2004, 45, 49. https://doi.org/10.1016/j.tetlet.2003.10.129
  15. Ollevier, T.; Lavie-Compin, G. Tetrahedron Lett. 2002, 43, 7891. https://doi.org/10.1016/S0040-4039(02)01896-8
  16. Babie, A.; Sova, M.; Gobec, S.; Peear, S. Tetrahedron Lett. 2006, 47, 1733. https://doi.org/10.1016/j.tetlet.2006.01.058
  17. Overman, L. E.; Flippin, L. A. Tetrahedron Lett. 1981, 22, 195. https://doi.org/10.1016/0040-4039(81)80053-6
  18. Rodriguez, J. R.; Navarro, A. Tetrahedron Lett. 2004, 45, 7495. https://doi.org/10.1016/j.tetlet.2004.08.010
  19. Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Massaccesi, M.; Melchiorre, P.; Sambri, L. Org. Lett. 2004, 6, 2173. https://doi.org/10.1021/ol049372t
  20. Chakraborti, A. K.; Rudrawar, S.; Kondaskar, A. Eur. J. Org. Chem. 2004, 3597.
  21. Lindsay, K. B.; Pyne, S. G. Tetrahedron 2004, 60, 4173. https://doi.org/10.1016/j.tet.2004.03.050
  22. Thibeault, D.; Poirier, D. Synlett 2003, 8, 1192.
  23. Williams, D. B. G.; Lawton, M. Tetrahedron Lett. 2006, 47, 6557. https://doi.org/10.1016/j.tetlet.2006.07.036
  24. Yarapathy, V. R.; Mekala, S.; Rao, B. V.; Tammishetti, S. Catal. Comm. 2006, 7, 466. https://doi.org/10.1016/j.catcom.2006.01.005
  25. Mojtahedi, M. M.; Saeed Abaee, M.; Hamidi, V. Catal. Comm. 2007, 8, 1671. https://doi.org/10.1016/j.catcom.2007.01.030
  26. Swamy, N. R.; Goud, T. V.; Reddy, S. M.; Krishnaiah, P.; Venkateswarlu, Y. Synth. Comm. 2004, 34, 727. https://doi.org/10.1081/SCC-120027721
  27. Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett. 2003, 44, 8315. https://doi.org/10.1016/j.tetlet.2003.09.046
  28. Lindsay, K. B.; Pyne, S. G. J. Org. Chem. 2002, 67, 7774. https://doi.org/10.1021/jo025977w
  29. Lindstrom, U. M.; Somfai, P. Tetrahedron Lett. 1998, 39, 7173. https://doi.org/10.1016/S0040-4039(98)01536-6
  30. Lindsay, K. B.; Tang, M.; Pyne, S. G. Synlett. 2002, 5, 731.
  31. Chakraborti, A. K.; Rudrawar, S.; Kondaskar, A. Org. Biomol. Chem. 2004, 2, 1277. https://doi.org/10.1039/b400588k
  32. Chakraborti, A. K.; Kondaskar, A.; Rudrawar, S. Tetrahedron 2004, 60, 9085. https://doi.org/10.1016/j.tet.2004.07.077
  33. Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Venkat Narasaiah, A. Tetrahedron Lett. 2003, 44, 1047. https://doi.org/10.1016/S0040-4039(02)02735-1
  34. Harvath, A.; Skoda-Foldes, R.; Maho, S.; Berente, Z.; Kollar, L. Steroids 2006, 71, 706. https://doi.org/10.1016/j.steroids.2006.04.006
  35. Azizi, N.; Saidi, M. R. Org. Lett. 2005, 7, 3649. https://doi.org/10.1021/ol051220q
  36. Evans, J. M.; Fake, C. S.; Hamilton, T. C.; Poyser, R. H.; Watts, E. A. J. Med. Chem. 1983, 26, 1582. https://doi.org/10.1021/jm00365a007
  37. Yoo, S.-E.; Yi, K. Y.; Lee, S.; Suh, J.; Kim, N.; Lee, B. H.; Seo, H. W.; Kim, S.-O.; Lee, D.-H.; Lim, H.; Shin, H. S. J. Med. Chem. 2001, 44, 4207. https://doi.org/10.1021/jm010183f

Cited by

  1. DABCO-Catalyzed Green Synthesis of 2-Hydroxy-1,4-diones via Direct Aldol Reaction of Arylglyoxals in Water vol.57, pp.2, 2013, https://doi.org/10.5012/jkcs.2013.57.2.252
  2. N-Fluorobenzenaminium tetrafluoroborate generated in situ by aniline and Selectfluor as a reusable catalyst for the ring opening of epoxides with amines under microwave irradiation vol.4, pp.11, 2014, https://doi.org/10.1039/C4CY00609G
  3. Mesoporous Titania-Iron(III) Oxide with Nanoscale Porosity and High Catalytic Activity for the Synthesis of β-Amino Alcohols and Benzimidazole Derivatives vol.7, pp.17, 2015, https://doi.org/10.1002/cctc.201500563
  4. Recent trends in ring opening of epoxides by amines as nucleophiles vol.46, pp.10, 2016, https://doi.org/10.1080/00397911.2016.1170148
  5. Stereoselective synthesis of (3S,4R)- and (3R,4S)-4-(N-substituted-amino)-2,2-dimethyl-6-nitrochroman-3-ols via the microwave assisted regioselective ring opening of epoxides in the presence of neutra vol.23, pp.14, 2011, https://doi.org/10.1016/j.tetasy.2012.07.002
  6. Synthesis and characterization of sulfolane-based amino alcohols: A combined experimental and computational study vol.1157, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2017.12.055