• Title/Summary/Keyword: chemical states

Search Result 850, Processing Time 0.028 seconds

Characteristics of $K_2NiF_4$-Type Oxides $(Sr,Sm)_2FeO_{~4}$

  • 요철현;이은석
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.321-324
    • /
    • 1996
  • Sr1+xSm1-xFeO4-y solid solutions with a composition range 0.00 ≤x≤1.00 have been prepared at 1200 ℃ in air under normal atmospheric pressure. All the solutions exhibit the K2NiF4-type structure of tetragonal system. Mohr salt analysis shows that the mole ratio of Fe4+ ion to Fe3+ ion or the τ value increases with the x value. Nonstoichiometric chemical formulas have been formulated from the x, τ, and y values. Electrical conductivity was measured in the temperature range of 173-373 K under atmospheric air pressure. The conductivities of each sample are varied within the semiconductivity range. The conductivity at constant temperature increases steadily with x value and activation energies are varied from 0.14 to 0.32 eV. The conduction mechanism of the ferrite system may be proposed as a hopping model of conduction electrons between the mixed valence states. The Mossbauer spectrum for the composition of x=0.00 shows a six line pattern by which the existence of Fe3+(I.S.=0.32 mm/sec) can only be identified. The spectra for the compositions of x=0.50 and 1.00 presents broad single line patterns showing a mixed valence state.

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian;Kozhukharov, Stephan;Tsanev, Alexander;Dishliev, Angel
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.188-203
    • /
    • 2021
  • The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

A Study of Emergency Preparedness Status of Korea's Local Governments and Emergency Preparedness Policies of United States' Government (우리나라 지역의 재난대비 실태와 미국의 재난대비 정책 고찰 연구)

  • We, Kum Sook;Jeong, An Young;Sim, Jee Hye
    • Journal of Korean Society of Disaster and Security
    • /
    • v.5 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • Local governments need to be prepared for emergency response in order to minimize damages caused by disasters, such as typhoon and chemical incidents. In this study, we have researched and analyzed current emergency preparedness status of Korea's local governments by studying laws and policies, and interviewing emergency managers. We have introduced policies to enhance emergency preparedness capabilities of United States' local governments. These policies could be useful for Korean government in developing policies to build up emergency response capabilities of Korea's local governments.

Quantitative Approaches in Use to Assess Cancer Risk

  • Anderson Elizabeth L.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.450-468
    • /
    • 1994
  • Scientists have long used conventional toxicological methods to establish 'safe levels of exposure' for chemicals presumed to have threshold health effects or doses below which significant effects are unlikely to occur. These same methods cannot be used to establish safe levels of exposure for non-threshold pollutants. such as carcinogens. Therefore. Federal regulatory agencies in the United States are using risk assessment methods to provide information for public health policy decisions concerning increases in risk associated with increases in exposure to carcinogenic and other non-threshold pollutants. Acceptable exposure/risk levels are decided by policymakers who consider descriptions and estimates of risks together with social and economic benefits from the uses of the chemical. 1bis paper focuses on the development of quantitative risk assessment approaches by Federal regulatory agencies in the United States, and identifies the mathematical models currently being used for risk extrapolation. including their inherent uncertainties. The uncertainties and limitations of these methods have led some scientists to question the utility of quantitative risk extrapolation. The experience of the; U.S. Environmental Protection Agency (EPA). as summarized in this paper. can provide a realistic basis for evaluating the pros and cons. Finally. shortcomings in current risk assessment methods and their use in policy decisions are explored. and areas for possible improvement. given current scientific knowledge. are identified.

  • PDF

PtNi and PtRuNi Alloy catalysts for Methanol Electrooxidation (메탄올 산화 반응을 위한 PtNi과 PtRuNi 합금 촉매)

  • Park Kyeong Won;Gwon Bu Gil;Choi Jong Ho;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.37-42
    • /
    • 2001
  • The electrooxidation of methanol was studied using Pt, PtNi(1.1 and 3:1), PtRuNi and PtRu(1:1) alloy nanoparticles in sulfuric acid solution for application to a direct methanol fuel cell. The PtNi and PtRuNi alloys showed excellent catalytic activities compared to those of pure Pt and PtRu. The role of Ni in the electrocatalytic activity was investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). The XPS data confirm that the chemical states of Pt are exclusively metal as well as the presence of metallic Ni, NiO, $Ni(OH)_2$, NiOOH, metallic Ru, $RuO_2$, and $RuO_3$. Negative shifts of the binding energies of Pt for the PtNi alloy nanoparticles were determined by XPS measurements. This can be explained based by assuming that the enhanced activities of PtNi alloys for methanol electrooxidation were caused by the oxide states of Ni and by the change in the electronic structure of Pt component in the alloys.

  • PDF

Electrical Characterization of Cu(InxGa1-x)(SySe2-y) Thin Film Solar Cells

  • Kim, Dahye;Kim, Ji Eun;Cho, Yunae;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.464.1-464.1
    • /
    • 2014
  • Among numerous material candidates, Cu(InxGa1-x)(SySe2-y) (CIGS) thin films have emerged as promising material candidates for thin film solar cell applications due to the high energy conversion efficiency and relatively low fabrication cost. The CIGS thin film solar cells consist of several materials, including Mo back contacts, ZnO-based window layers, and CdS buffer layers. All these materials have different crystal structures and contain quite distinct chemical elements, and hence the device characterization requires careful analyses. Most of all, identification of the major trap states resulting in the carrier recombination processes is a key step toward realization of high efficiency CIGS solar cells. We have carried out electrical investigations of CIGS thin film solar cells to specify the major trap states and their roles in photovoltaic performance. In particular, we have used the temperature-dependent transport characterizations and admittance spectroscopy. In this presentation, we will introduce some exemplary studies of DC and AC electrical characteristics of the CIGS solar cells.

  • PDF

Surface Analysis of Silicone Polymer used as Insulating Material by XPS and Surface Voltage Decay (XPS 및 Surface voltage decay를 이용한 실리콘 절연재료의 표면분석)

  • Youn, B.H.;Lee, K.T.;Park, C.R.;Kim, N.R.;Seo, Y.J.;Huh, C.S.;Cho, H.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.236-239
    • /
    • 2002
  • Surface states of silicone polymer treated by plasma were investigated by the analysis by x-ray photoelectron spectroscopy (XPS) and surface voltage decay. Plasma treatment causes the silica-like oxidative layer, which is confirmed with XPS, and lowers surface resistivity with increasing the plasma treatment time. Using the decay time constant of surface voltage, the calculated surface resistivity was compared with the value directly measured by a voltage-current method. A good agreement between two methods was obtained. In addition, we estimated the thermal activation energy for surface conduction, Based on our results, we could understand the relationship between surface chemical states and surface electrical properties.

  • PDF

Surface States and Field Emission Properties of Oxygen Plasma Treated Carbon Nanotubes (산소 플라즈마 처리한 탄소나노튜브의 표면상태와 전계방출 특성)

  • Lee, Sunwoo;Lee, Boong-Joo;Park, Gu-Bum;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.376-379
    • /
    • 2013
  • Multi-walled carbon nanotubes (MWCNTs) were synthesized using catalytic chemical vapor deposition (CVD) method. Oxygen plasma treatment was applied to modify surface state of the CNTs synthesized for improvement of field emission performance. Surface state of the plasma treated CNTs was studied by X-ray photoelectron spectroscopy (XPS). The surface states of the CNTs were changed as a function of plasma treatment time. The oxygen related carbon shift was moved toward higher binding energy with the plasma treatment time. This result implies that the oxygen plasma treatment changes the surface state effectively. While any shift in carbon 1s peak was not detected for the as grown CNTs, oxygen related carbon shift was detected for the plasma treated CNTs. Carbon shift implies that closed CNT tips were opened by the oxygen plasma and reacted with oxygen species. Since the field emission occurs at pentagons or dangling bonds of the CNT tips, the increase of carbon-oxygen bonds plays an important role in field emission behavior by increasing the number of electron emission sites resulting in improvement of the field emission performance.

Optical Bleaching Behaviour of Neutron Irradiated KCI Single Crystal

  • Suh, In-Suck
    • Nuclear Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.286-290
    • /
    • 1973
  • Hydroxide free KCI single crystals are prepared and doped with samall amounts of KSH or $K_2$S. The samples are subjected to neutron irradiations while keeping them under the condition of liquid nitrogen temperature in the dark. The irradiated ones are then bleached by using a U.V. lamp and analysed as four different kinds of chemical forms in $^{35}$ S whose valence states are -2, 0, +4 and +6. It semms that the sulphide fraction of $^{35}$ S in doped crystals is higher than that in pure crystals. In addition, two distinct patterns in bleaching process up to 30 minutes results in a fast increase in the sulphide fraction and then the sulphide levels off to a slowly increasing region upon prolonged bleaching. A detailed description on the distribution of $^{35}$ S valence states will be made in connection with point defects in the crystals.

  • PDF

Development of a New On-line state Estimation Method in PEMFC using Parameter Estimation (계수추정법을 이용한 PEMFC에서의 실시간 상태 추정 방법 개발)

  • YOO, SEUNGRYEOL;CHOI, DONGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • The development need of new renewable energy is more and more important to resolve exhaustion of chemical fuels and environmental pollution. Polymer electrolyte membrane fuel cell has been widely studied to the extent that it can be used commercially. But there are many problems to be solved. One of them is to enhance the stability of fuel cell stacks. This paper proposes a new fault diagnosis method using Least Square Method (LSM) which is one of parameter estimation methods. The proposed method extracts equivalent circuit parameters from on-line measurements. Parameters of the circuit are estimated according to normal and abnormal states using simulation. The variation of parameters estimated in each states enables the estimation of state in fuel cells. Thus the LSM presented can be a suitable on-line parameter estimation method in PEMFC.