• Title/Summary/Keyword: chemical reaction.

Search Result 9,386, Processing Time 0.041 seconds

Reduction and Equilibrium of Vanadium-Diethylenetriamine Pentaacetates at Mercury Electrode in Aqueous Solution (수용액중의 수은전극에서 바나듐-디에틸렌트리아민 펜타아세트산염의 환원 및 평형연구)

  • Ki-Suk Jung;Se Chul Sohn;Young Kyung Ha;Tae Yoon Eom;Sock Sung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 1989
  • Reduction and equilibrium of vanadium-DTPA (DTPA = diethylenetriaminepentaacetic acid, $H_5A$) complexes at mercury electrodes are studied in 0.5M $NaClO_4$ aqueous solution at 3.2 < pH < 10.5 and 25$^{\circ}$C. At 3.2 < pH < 5.9, the reduction reaction is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}HA^{2-}$, while at 5.9 < pH < 10.5 it is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}A^{3-}$. The stability constants of $V{\cdot}HA^{2-}$ and $V{\cdot}A^{3-}$ are found to be $6.46{\times}10^{9}$ and $3.09{\times}10^{14}$, respectively. V(IV)-DTPA undergoes stepwise complexation as $VO^{2+}+H_2A^{3-}=VO{\cdot}HA^{2+}H^{+}$ and $VO{\cdot}HA^{2-}=VO{\cdot}A^{3+}+H$, where acidity constant of $VO{\cdot}HA^{2-}$- is pKa = 7.15. Stability constants of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $1.41{\times}10^{14}$ and $3.80{\times}10^{17}$, respectively. It is detected that $VO^{2+}-DATA$ is reduced irreversibly to $VO^{2-}$ with the transfer coefficient of $\alpha$ = 0.43. At more cathodic overpotential, the reduction is stepwise as V(IV)${\to}$V(III)${\to}$V(II). The first one corresponds to $VO{\cdot}HA^{2-}+e^{-}{\to}VO{\cdot}HA{3+}$ at 3.2 < pH < 7.2 and $VO{\cdot}A^{3-}+e^{-}{\to}VO{\cdot}A^{4-}$ at 7.2 < pH < 10.5. The second is identical to that of V(III). Diffusion coefficients of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $(9.0{\pm}0.3){\times}10^{-6}cm^2/s$ and $(5.9{\pm}0.4){\times}10^{-6}cm^2/ses$, respectively.

  • PDF

Magnetic Properties of Electroless Co-Mn-P Alloy Deposits (무전해 Co-Mn-P 합금 도금층의 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 1999
  • Usually sputtering and electroless plating methods were used for manufacturing metal-alloy thin film magnetic memory devices. Since electroless plating method has many merits in mass production and product variety com­pared to sputtering method, many researches about electroless plating have been performed in the United State of America and Japan. However, electroless plating method has not been studied frequently in Korea. In these respects the purpose of this research is manufacturing Co-Mn-P alloy thin film on the corning glass 2948 by electroless plating method using sodium hypophosphite as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction 0$\alpha$urred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of $80^{\circ}C$. Also magnetic charac­teristics was found to be most excellent at the pH of 9 and the temperature of $70^{\circ}C$, resulting in the coercive force of 8700e and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was $0.216\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand,(1010), (0002), (1011) orientation of hcp for a-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-Mn-P alloy deposition, coercive force was about 1000e more than that of Co P alloy, but squareness had no difference. For crystal orientation, (l01O) and (lOll) orientation of $\alpha$-Co was dominant as same as that of Co- P alloy. Likewise we could confirm the formation of longitudinal magnetization.

  • PDF

Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier (미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구)

  • Han, Si Woo;Seo, Myung Won;Park, Sung Jin;Son, Seong Hye;Yoon, Sang Jun;Ra, Ho Won;Mun, Tae-Young;Moon, Ji Hong;Yoon, Sung Min;Kim, Jae Ho;Lee, Uen Do;Jeong, Su Hwa;Yang, Chang Won;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.874-882
    • /
    • 2019
  • In this study, the gasification characteristics of four types of unused woody biomass and one waste wood in a lab-scale bubbling fluidized bed gasifier (Diameter: 0.11 m, Height: 0.42 m) were investigated. Effect of equivalence ratio (ER) of 0.15-0.3 and gas velocity of $2.5-5U_0/U_{mf}$ are determined at the constant temperature of $800^{\circ}C$ and fuel feeding rate of 1 kg/h. The silica sand particle having an average particle size of $287{\mu}m$ and olivine with an average particle size of $500{\mu}m$ were used as the bed material, respectively. The average product gas composition of samples is as follows; $H_2$ 3-4 vol.%, CO 15-16 vol.%, $CH_4$ 4 vol.% and $CO_2$ 18-19 vol.% with a lower heating value (LHV) of $1193-1301kcal/Nm^3$ and higher heating value (HHV) of $1262-1377kcal/Nm^3$. In addition, it was found that olivine reduced most of C2 components and increased $H_2$ content compared to silica sand, resulting in cracking reaction of tar. The non-condensable tar decreases by 72% ($1.24{\rightarrow}0.35g/Nm^3$) and the condensable tar decreases by 27% ($4.4{\rightarrow}3.2g/Nm^3$).

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Optimization for Removal of Nitrogen Using Non-consumable Anode Electrodes (비소모성 Anode(산화전극)을 이용한 질소 제거 최적화)

  • Hyunsang, Kim;Younghee, Kim
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.309-315
    • /
    • 2022
  • Research was conducted to derive the optimal operation conditions and the optimal cathode for using a DSA electrode as an anode to minimize electrode consumption during the removal of nitrogen from wastewater by the electro-chemical method. Of the various electrodes tested as cathodes, brass was determined to be the optimal electrode. It had the highest NO3-N removal rate and the lowest concentration of residual NH3-N, a by-product when Cl is present in the solution. Investigating the effect of current density found that when the initial concentration of NO3-N was 50 mg L-1, the optimal current density was 15 mA cm-2. In addition, current densities above 15 mA cm-2 did not significantly affect the NO3-N removal rate. The effect of electrolytes on removing NO3-N and minimizing NH3-N was investigated by using Na2SO4 and NaCl as electrolytes and varying the reaction times. When Na2SO4 and NaCl are mixed at a ratio of 1.0 g L-1 to 0.5 g L-1 and reacted for 90 min at a current density of 15 mA cm-2 and an initial NO3-N concentration of 50 mg L-1, the removal rate of NO3-N was about 48% and there was no residual NH3-N. On the other hand, when using only 1.5 g L-1 of NaCl as an electrolyte, the removal rate of NO3-N was the highest at about 55% and there was no residual NH3-N.

Evaluation of microplastic in the inflow of municipal wastewater treatment plant according to pretreatment methods (전처리 방법에 따른 하수처리장 유입수에서의 미세플라스틱 성상분석 평가)

  • Kim, Sungryul;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • The amount of the plastic waste has been increasing according to global demand for plastic. Microplastics are the most hazardous among all plastic pollutants due to their toxicity and unknown physicochemical properties. This study investigates the optimal methodology that can be applied to sewage samples for detecting microplastics before discussing reducing microplastics in MWTPs. In this study, the effect of different pretreatment methods while detecting microplastic analysis of MWTP influent samples was investigated; the samples were collected from the J sewage treatment plant. There are many pretreatment methods but two of them are widely used: Fenton digestion and hydrogen peroxide oxidation. Although there are many pretreatment methods that can be applied to investigate microplastics, the most widely used methods for sewage treatment plant samples are Fenton digestion and H2O2 oxidation. For each pretreatment method, there were factors that could cause an error in the measurement. To overcome this, in the case of the Fenton digestion pretreatment, it is recommended to proceed with the analysis by filtration instead of the density separation method. In the case of the H2O2 oxidation method, the process of washing with distilled water after the reaction is recommended. As a result of the analysis, the concentration of microplastics was measured to be 2.75ea/L for the sample using the H2O2 oxidation method and 3.2ea/L for the sample using the Fenton oxidation method, and most of them were present in the form of fibers. In addition, it is difficult to guarantee the reliability of measurement results from quantitative analysis performed via microscope with eyes. A calibration curve was created for prove the reliability. A total of three calibration curves were drawn, and as a result of analysis of the calibration curves, all R2 values were more than 0.9. This ensures high reliability for quantitative analysis. The qualitative analysis could determine the series of microplastics flowing into the MWTP, but could not confirm the chemical composition of each microplastic. This study can be used to confirm the chemical composition of microplastics introduced into MWTP in the future research.

Occurrence and Chemical Composition of Carbonate Mineral from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대내 탄산염 광물의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.167-183
    • /
    • 2023
  • The Janggun Pb-Zn deposit consists of Mn orebody, Pb-Zn orebody and Fe orebody. The Mn orebody composed of manganese carbonate orebody and manganese oxide orebody on the basis of their mineralogy and genesis. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This manganese carbonate orebody is hydrothermal replacement orebody formed by reaction of lead and zinc-bearing hydrothermal fluid and Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this hydrothermal replacement orebody consists of mainly rhodochrositization with minor of dolomitization, pyritization, sericitization and chloritization. Carbonates formed during wallrock alteration on the basis of paragenetic sequence are as followed : Ca-dolomite (Co type, wallrock) → ankerite and Ferroan ankerite (C1 type, early stage) → ankerite (C2 type) → sideroplesite (C3 type) → sideroplesite and pistomesite (C4 type, late stage). This means that Fe and Mn elements were enriched during evolution of hydrothermal fluid. Therefore, The substitution of elements during wallrock alteration beween dolomitic marble (Mg, Ca) and lead and zinc-bearing hydrothermal fluid (Fe, Mn) with paragenetic sequence is as followed : 1)Fe ↔ Mn and Mn ↔ Mg, Ca, Fe elements substitution (ankerite and Ferroan ankerite, C1 type, early stage), 2)Fe ↔ Mn, Mn ↔ Mg, Ca and Mg ↔ Ca elements substitution (ankerite, C2 type), 3)Fe ↔ Mn, Fe ↔ Ca and Mn ↔ Mg, Ca elements substitution (sideroplesite, C3 type), and 4)Fe ↔ Mg, Fe ↔ Mn and Mn ↔ Mg, Ca elements substitution (sideroplesite and pistomesite, C4 type, late stage)

Occurrence and Chemical Composition of Ti-bearing Minerals from Samgwang Au-ag Deposit, Republic of Korea (삼광 금-은 광상에서 산출되는 함 티타늄 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.195-214
    • /
    • 2020
  • The Samgwang Au-Ag deposit has been one of the largest deposits in Korea. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. The Ti-bearing minerals occur in wallrock (titanite, ilmenite and rutile) and laminated quartz vein (rutile). They occur minerals including biotite, muscovite, chlorite, white mica, monazite, zircon, apatite in wallrock and white mica, chlorite, arsenopyrite in laminated quartz vein. Chemical composition of titanite has maximum vaules of 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) and 0.43 wt.% (V2O5). Titanite with 0.06~0.14 (Fe/Al ratio) and 0.06~0.15 (XAl (=Al/Al+Fe3++Ti)) corresponds with metamorphic origin and low-Al variety. Chemical composition of ilmenite has maximum values of 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3) and 1.59 wt.% (ZnO). Chemical composition of rutile in wallrock and laminated quartz vein has maximum values of 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3) and 4.76 wt.%, 3.17 wt.% (FeO), respectively. Rutile in laminated quartz vein is higher contents (HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 and FeO) and lower content (WO3) than rutile in wallrock. The substitutions of rutile in wallrock and laminated quatz vein are as followed : rutile in wallrock [(Fe3+, Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + V4+, 2Fe2+ + (Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + 2V4+], rutile in laminated quartz vein [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4+ + (W5+, Nb5+) + Cr3+], respectively. Based on these data, titanite, ilmenite and rutile in wallrock were formed by resolution and reconcentration of cations (W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+) in minerals of wallrock during regional metamorphism. And then rutile in laminated quartz vein was formed by reconcentration of cations (Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+) in alteration minerals (white mica, chlorite) and Ti-bearing minerals reaction between hydrothermal fluid originated during ductile shear and Ti-bearing minerals (titanite, ilmenite and rutile) in wallrock.

Studies on Glycolipids in Bacteria -Part II. On the Structure of Glycolipid of Selenomonas ruminantium- (세균(細菌)의 당지질(糖脂質)에 관(關)한 연구(硏究) -제2보(第二報) Selenomonas ruminantium의 당지질(糖脂質)의 구조(構造)-)

  • Kim, Kyo-Chang
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 1974
  • The chemical structure of glycolipid of Selenomonas ruminantium cell wall was to be elucidated. The bacterial cells were treated in hot TCA and the glycolipid fractions were extracted by the solvent $CHCl_3\;:\;CH_3OH$ (1 : 3). The extracted glycolipids fraction was further separated by acetone extraction. The acetone soluble fraction was named as the spot A-compound. The acetone insoluble but ether soluble fraction was named as the spot B-compound. These two compounds were examined for elucidation of their chemical structure. The results were as follows: 1. The IR spectral analysis showed that O-acyl and N-acyl fatty acids were linked to glucosamine moiety in the spot A-compound. However in the spot B-compound in addition to O and N-acyl acids phosphorus was shown to be attached to glucosamine. 2. It was recognized by gas liquid chromatography that spot A compound contained beta-OH $C_{13:0}$ fatty acid in predominance in addition to the fatty acid with beta-OH $C_{9:0}$, whereas the spot B compound was composed of the predominant fatty acid of beta-OH $C_{13:0}$ with small amount of beta-OH $C_{9:0}$. 3. According to the paper chromatographic analysis of hydrazinolysis products of the spot A compound, a compound of a similar Rf value as the chitobiose was recognized, which indicated a structure of two molecules glucosamine condensed. The low Rf value of the hydrazinolysis product of the spot B-compound confirmed the presence of phosphorus attached to glucosamine. 4. The appearance of arabinose resulting from. ninhydrin decomposition of the acid hydrolyzate of the spot A compound indicated that the amino group is attached to $C_2$ of glucosamine. 5. The amount of glucosamine in the N-acetylated spot A compound decreased in half of the original content by the treatment. with $NaBH_4$, indicating that there are two molecules of glucosamines in the spot A compound. The presence of 1, 6-linkage between two molecules of glucosamine was suggested by the Morgan-Elson reaction and confirmed by the periodate decomposition test. 6. By the action of ${\beta}-N-acetyl$ glucosaminidase the N-acetylated spot A compound was completely decomposed into N-acetyl glucosamine, whereas the spot B compound was not. This indicated the spot A compound has a beta-linkage. 7. When phosphodiesterase or phosphomonoesterase acted on $^{32}P-labeled$ spot B compound, $^{32}P$ was not released by phosphodiesterase, but completely released by phosphomonoesterase. This indicated that one phosphorus is linked to glucosamine moiety. 8. The spot A compound is assumed to have the following chemical structure: That is glucosaminyl, ${\beta}-1$, 6-glucosamine to which O-acyl and N-acyl fatty acids are linked, of which the predominant fatty acid is beta-OH $C_{13:0}$ fatty acid in addition to beta-OH $C_{9:0}$ fatty acid 9. The spot B compound is likely to have the linkage of $glucosaminyl-{\beta}-1$, 6-glucosamine to which phosphorus is linked in monoester linkage. Furthermore both O-acyl and N-acyl fatty acids contained beta-OH $C_{13:0}$ fatty acid predominantly in addition to beta-OH $C_{9:0}$ fatty acid.

  • PDF