• Title/Summary/Keyword: chemical pulp

Search Result 479, Processing Time 0.021 seconds

Recycling of Plant Fiber Resources: Enhanced Hydration of Newspaper Stock for Decrease of Deinking Reject (식물유래 섬유자원의 재활용: 탈묵 수율 개선을 위한 신문 지료의 수화 촉진 방안)

  • Chung, Sung-Hyun;Kim, Joong-Ho;Joo, Jong-Hun;Bang, Jae-Wook
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.10a
    • /
    • pp.39-41
    • /
    • 2011
  • The recycling rate of recovered paper in Korea is the highest in the world, 92%, but remanufacturing yield is low due to the extremely poor quality of the paper. The poor quality, in turn, influences to the reject amount in deinking process. To increase the yield of old newspaper recycling process, hydrophobic degree of inorganic pigments of deinking stock must be reduced. To determine the hydrophobicity, Pitch Potential Deposit Tester (PDT) was newly designed and applied with respect to the SB latex property of various quality used in Korea; its hydrophobic degree according to Tg, gel content, charge and particle size of latex and optimum designing condition of SB latex. And below are the conclusions: 1. The reason of excessive reject from old newspaper deinking process for total amount of printed ink is loss of inorganic pigments. When lipase, a biochemical catalyst, was applied with the purpose of preventing inorganic pigments loss about more than 70% of total reject weight and promoting hydration of pulp for deinking, deinking process yield of pre flotation secondary stage increased remarkably without any changes of deinking efficiency. 2. Lipase improved deinking stock by cutting ester linkage on surface of hydrophobic materials to promote its hydration. From this, it reached the conclusion that hydration degree of stock exercises significant effect on flotation deinking process yield. 3. Inorganic alkali promotes hydration of deinking stock. But there have been needs for more fundamental measures other than inorganic alkali of promoting hydration for yield improvement. For this, this study intended to find out reasons of chemical properties change on surface of hydrophobic material by change of pH. 4. Pitch Deposit Test (PDT) was performed for understanding principle of why surface of coating flake from OMG is hydrophobic and why it becomes hydrophilic when pH of stock is alkaline. As a result of this test, it is determined that swelling property by change of pH of latex film, which were used as coating adhesive is the reason for hydrophobic change. 5. Hydrophilicity of coating flake increased with hydrophilic pigments. And as more of SB Latex adhesive was used and higher of calcium hardness of stock became, its hydrophilicity decreased. SB Latex adhesive film is reformed by mechanical friction. For having hydrophilicity under neutral pH, strong bruising action such as kneading is required. 6. Because swelling of adhesive film decreases as Tg of SB latex gets lower and mean diameter gets smaller, it shows hydrophobicity under neutral pH. This lowers hydrophilicity of coating flake, which leads to easy elimination with flotation reject on DIP process. Therefore, for improving future flotation yield, it is necessary to develop to use eco-friendly clean SB latex by raising Tg and increasing mean diameter for recycling, and as a result, to reduce excessive loss of coating flake as a reject from deinking process.

  • PDF

Growth characteristics of oyster mushroom following the addition of wheat straw pellet as a substitute for beet pulp (비트펄프 대체 밀짚펠렛 첨가에 따른 느타리 생육 특성)

  • Jun-Yeong, Choi;Jeong-Han, Kim;Yeon-Jin, Kim;Chae-Young, Lee;Il-Seon, Baek;Tai-Moon, Ha;Chan-Jung, Lee;Gab-June, Lim
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.270-273
    • /
    • 2022
  • The present study investigated the optimum additive ratio of wheat straw pellet as a substitute for beet pulp during oyster mushroom cultivation. The chemical properties across treatments were pH of 4.8-5.5, total carbon content of 45.9-46.5%, total nitrogen content of 1.5-1.7%, and carbon-to-nitrogen ratio of 27.8-31.0. Mycelial growth was the fastest in a medium containing 20% wheat straw pellet (at 88.2 mm in 'Heuktari' and 70.3-79.6 mm in 'Suhan-1Ho'); however, there were no significant differences in mycelial density among the treatments. The characteristics of fruiting bodies by variety were as follows. In 'Heuktari', the valid stipe number per bottle (1,100 cc) was 22.5 and yield was 177.1 g/1,100 cc in the mixed medium containing 10% wheat straw pellet, with the values being comparable to those of controls. In 'Suhan-1Ho', the valid stipe number per bottle (1,100 cc) was 14.0 and yield was 151.2 g/1,100 cc in the mixed medium containing 10% wheat straw pellet, with the values being comparable to those of controls.

Development of Ceramic Membrane for Metal Ion Separation of Lignin Extract from Pulp Process (펄프공정으로부터 배출되는 리그닌 추출물의 금속이온 분리를 위한 세라믹 분리막 개발)

  • Shin, Min Chang;Choi, Young Chan;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, a study was carried out for the separation of metal ions in lignin extract discharged from the pulp process. alumina powders were mixed with DMAc (N, N-dimethylacetamide) solvent and PESf (Polyethersulfone) polymer, PVP (polyvinylpyrrolidone) dispersant was added and slip casting method was used to prepare the membrane. The membrane was measured for pore size through a CFP (Capillary Flow Porometer) device and the surface and cross-section of the membrane were observed through a FE-SEM (Field Emission Scanning Electron Microscope). The flux was calculated by measuring the filtered weight per hour using a separation experiment device. Pore size measurements were performed under increasing pressure from 0 psi to 30 psi. The pore size of the membrane was $0.4{\mu}m$ and the flux decreased from the initial flux value of $6.36kg{\cdot}m^{-2}{\cdot}h^{-1}$ to $1.98kg{\cdot}m^{-2}{\cdot}h^{-1}$ due to the fouling of the membrane. After the permeation experiment, membrane contaminants were removed by simple washing. Separation experiments showed that Na contained in the initial lignin extract was reduced by 69%, Fe was removed by 87%, K by 95%, Ca by 93% and Mg by 96%.

Chemical Properties and Fiber Dimension of Eucalyptus pellita from The 2nd Generation of Progeny Tests in Pelaihari, South Borneo, Indonesia

  • Lukmandaru, Ganis;Zumaini, Umi Farah;Soeprijadi, Djoko;Nugroho, Widyanto Dwi;Susanto, Mudji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.571-588
    • /
    • 2016
  • Eucalyptus pellita F. Muell is one of pulp woods that is being developed through breeding plantation programs in Indonesia. The research aimed at exploring the chemical and morphological characteristics of fiber, and to determine the rank of plus trees from 4 provenances based on the suitability for pulps. The materials included the plus trees of E. pellita (9 years) from the 2nd generation of progeny tests in Pelaihari, South Borneo. Wood properties under investigation included the chemical properties and morphological fiber characteristics (fiber dimensions and its derived properties). In the present study, data were analyzed using descriptive statistic, Analytic Hierarchy Process (AHP) and Pearson's correlation. Results showed that the chemical properties of E. pellita, i.e. the contents of ethanol-toluene extractives, hot water soluble extractives, holocellulose, alphacelullose, and lignin were $3.08{\pm}1.00%$, $1.41{\pm}0.38%$, $75.26{\pm}2.58%$, $49.02{\pm}2.88%$, and $29.49{\pm}1.86%$, respectively. The average values of wood fiber morphology were $1.02{\pm}0.08$ mm (fiber length), $13.25{\pm}1.64{\mu}m$ (fiber diameter), of $6.94{\pm}1.70{\mu}m$ (lumen diameter), $3.15{\pm}0.52{\mu}m$ (fiber wall thickness), $0.97{\pm}0.30$ (Runkel ratio), $0.57{\pm}0.10$ (Luce's shape factor), $78.21{\pm}10.34$ (slenderness ratio) and $130.91{\pm}33.77{\times}10^3{\mu}m^3$ (solids factor). The AHP scoring rank indicated that the best individuals were 28.4.3.28 (Kiriwo Utara), 12.1.5.28 (North Kiriwo), 19.11.5.45 (Serisa Village), 3.8.4.9 (South Kiriwo), and 6.6.3.15 (South Kiriwo). Pearson correlation analysis showed significant correlations between the levels of fiber length with alpha-cellulose content (r = 0.39) as well as the fiber length with ethanol-toluene extractive contents (r = -0.41).

Chemical compositions and antioxidant activities depending on cultivation methods and various parts of yuza (유자 재배방법에 따른 부위별 화학적 성분 및 항산화 활성)

  • Lee, Jong Eun;Kim, Kyung Mi;Kim, Jin Sook;Kim, Gi Chang;Choi, Song Yi;Kim, Sang Bum
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.802-812
    • /
    • 2017
  • This study was conducted to investigate the quality properties depending on the cultivation methods (general, organic, pesticide-free) of yuza and its various parts (peel, pulp, seed). The contents of hesperidin were the highest in yuza feel grown by pesticide-free method (13.23 mg/g). The contents of naringin presented a higher content in the peel, especially which of the general (4.62 mg/g) showed the highest value. Vitamin C analysis showed the highest content in the peel, significantly varied according to the cultivation method and various parts (p<0.05). Vitamin C value was significantly highest in organic peel, which was 770.02 mg/100 g, whereas among the peel, the pulp and the seed were it the lowest in the seed. The content of total polyphenols were the highest in general peel (0.85 mg/g). Flavonoid content of pesticide-free seed was significantly higher than those of the other yuja samples which was 0.89 mg/g (p<0.05). The DPPH radical scavenging activity was relatively more active in the peel among the above-mentioned three parts, especially the pesticide-free peel was most active, which was 73.94%. The ABTS radical scavenging activity of organic peel was significantly active among the samples, which was 84.47% (p<0.05). Based on these results, it can be said that yuja has variety of useful components in the pulp and the seed as well as the peel: and thus it's hight recommended to develop more varied yuja products.

Method for nutrient solution extraction from used diposed diapers (일회용 폐기저귀에서 양액 추출 방안)

  • Nobel, Ballhysa;Han, Se Hee
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.34-41
    • /
    • 2020
  • Used disposable diapers have been considered for a long time as a type of waste difficult to recycle and valorize due to their composite nature including plastic, cellulose pulp, a super absorbent polymer and either urine, feces or both. Therefore, the fate of disposed diapers often is either incineration or landfill burial which both have various adverse environmental impacts. However, used disposable diapers contain nutrients: cellulose is an organic matter while urine and feces contain non negligible amounts of nitrogen, phosphorus and potassium which are primary nutrients included in most chemical fertilizers used in agriculture. In a scope of waste recycling and valorization, this study focuses on developing a method to achieve nutrient solution extraction from used disposable diapers. The experiment essentially consists in shredding the diapers and letting them macerate in solutions of sodium hydroxide with various concentrations to allow breaking down of the cellulose and super absorbent polymer and release of urine and feces before sterilizing the solutions in an autoclave to remove potential coliform bacteria. At the end of the experiment, a set of parameters is measured for the final solution to identify concentrations of nutrients as well as presence or absence of harmful substances. Results are discussed and directions for future studies are suggested, which include mechanization of the diapers shredding process or added aeration to enhance nitrification and absorption of extracted nutrients from plants.

Dispersion Polymerization of Acrylamide in t-Butyl Alcohol/Water Media

  • Lee, Ki-Chang;Lee, Seung-Eun;Park, Yoo-Jin;Song, Bong-Keun
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.213-218
    • /
    • 2004
  • We have performed dispersion polymerization of acrylamide in tert-butyl alcohol/water mixture-using hydroxypropyl cellulose and ammonium persulfate as the stabilizer and the initiator, respectively - to study the effects that the concentration of monomer, initiator, and stabilizer, the tert-butyl alcohol/water ratios as polymerization media, and the reaction temperature have on, among other things, the polymerization kinetics, particle sizes, and molecular weights. The polymerization rate increased upon increasing the concentration of the monomer, initiator, and stabilizer, the water content in the tert-butyl alcohol/water media, and the polymerization temperature. The average particle size of the lattices increased upon increasing the concentration of initiator, the polymerization temperature, and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing the concentration of monomer and stabilizer. The viscosity-average molecular weight increased upon increasing the concentration of monomer and stabilizer and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing both the concentration of initiator and the polymerization temperature.

Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position (증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석)

  • Kim, Deukwon;Choi, Sangmin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

Recovery of Platinum from Spent Petroleum Catalysts by Substrate Dissolution in Sulfuric Acid

  • Lee, Jae-Chun;Jinki Jeong;Kim, Wonbaek;Jang, Hee-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.472-477
    • /
    • 2001
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of precious metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina substrate with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid. and pulp density on the dissolution of substrate was investigated. When the substrate of platinum catalyst was ${\gamma}$-AI$_2$O$_3$ about 95% alumina was dissolved in 6.0M sulfuric acid at 10$0^{\circ}C$ for 2 hours. When the substrate was the mixture of ${\gamma}$-A1$_2$O$_3$and $\alpha$-A1$_2$O$_3$about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was obtained as byproduct.

  • PDF

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.