• Title/Summary/Keyword: chemical ionization

Search Result 409, Processing Time 0.026 seconds

Carbamoyl-phosphate synthetase 2 is identified as a novel target protein of methotrexate from chemical proteomics

  • Kim, Eui-Kyung;Park, Jong-Bae;Ha, Sang-Hoon;Ryu, Sung-Ho;Suh, Pann-Ghill
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.236-242
    • /
    • 2002
  • Using agarose-coupled methotrexate, we have successfully isolated two proteins, which have strong interactions with methotrexate. The two proteins were analyzed by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and identified as carbamoyl-phosphate synthetase 2 and phosphoribosylglycinamide formyltransferase, respectively. Interestingly, both of these two proteins are essential key enzymes in nucleotide biosynthetic pathways, like dihydrofolate reductase, a well-known methotrexate target. We confirmed the specificity of their interactions between methotrexate and two target proteins by the methods of competition binding assay, which were followed by western blotting using antibody against carbamoyl-phosphate synthetase 2 and phosphoribosylglycinamide formyltransferase, respectively. Moreover, we could observe that carbamoyl-phosphate synthetase 2 is overexpressed in methotrexate-resistant MOLT-3 cells comparing with control MOLT-3 cells. This result indicates that carbamoyl-phosphate synthetase 2 may be a novel target of methotrexate in cancer therapy. We propose that chemical proteomics can be a powerful technique to identify target proteins of a chemical.

  • PDF

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

An Electrochemical Study on Photoluminescent and Electroluminescent Characteristics of $Zn(BOX)_{2}$ and $Zn(BTZ)_{2}$ (($Zn(BOX)_{2}$$Zn(BTZ)_{2}$의 광발광 특성 및 전계발광 특성에 대한 전기 화학적 연구)

  • Park, Jee-Young;Kwon, Oh-Kwan;Choi, Don-Soo;Kim, Young-Kwan;Sohn, Byoung-Chung;Ha, Yun-Kyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.63-66
    • /
    • 2000
  • Organic Electroluminescent devices(OELD) consisted of multilayer structures have been studied for the application the application to flat-panel display. Metal-chelate complexes, zinc bis(2-(2-hydroxyphenyl)benzoxazolate) ($Zn(BOX)_{2}$) and zinc bis(2-(2-hydroxyphenyl)benzothiazolate) ($Zn(BOX)_{2}$), have been intensively investigated as an white-light emitting layer and recognized to have good electroluminescent(EL) properties. In this study, ($Zn(BOX)_{2}$) and ($Zn(BTZ)_{2}$) were synthesized and characterized by FT-IR, $^{1}H-NMR$, UV-VIS and PL. Their EL properties were also studied and their ionization potential(IP) and electron affinity(EA) were also measured by cyclic voltammetry(CV).

The Chemical Composition of HD47536: A Planetary Host Halo Giant with Possible 𝛌 Bootis Features and Signs of Interstellar Matter Accretion

  • Yushchenko, Alexander;Doikov, Dmytry;Andrievsky, Sergei;Jeong, Yeuncheol;Yushchenko, Volodymyr;Rittipruk, Pakakaew;Kovtyukh, Valery;Demessinova, Aizat;Gopka, Vira;Raikov, Alexander;Jeong, Kyung Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.169-180
    • /
    • 2022
  • We investigated the chemical composition of the planetary host halo star HD47536 via high-resolution spectral observations recorded using a 1.5 meter Cerro Tololo Inter-American Observatory (CTIO) telescope (Chile). Furthermore, we determined the abundances of 38 chemical elements. Both light and heavy elements were overabundant compared to the iron group elements. The abundance pattern of HD47536 was similar to that of halo-type stars, with an enrichment of heavy elements. We analyzed the relationships between the relative abundances of chemical elements and their second ionization potentials and condensation temperatures. We demonstrated that the interplay of charge-exchange reactions owing to the accretion of interstellar matter and the gas-dust separation mechanism can influence the initial abundances and can be used to qualitatively explain the abundance patterns in the atmosphere of HD47536.

MALDI-MS-Based Quantitative Analysis of Bioactive Forms of Vitamin D in Biological Samples

  • Ahn, Da-Hee;Kim, Hee-jin;Kim, Seong-Min;Jo, Sung-Hyun;Jeong, Jae-Hyun;Kim, Yun-Gon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.106-112
    • /
    • 2020
  • Analyzing vitamin D levels is important for monitoring health conditions because vitamin D deficiency is associated with various diseases such as rickets, osteomalacia, cardiovascular disorders and some cancers. However, vitamin D concentration in the blood is very low with optimal level of 75 nmol/L, making quantitative analysis difficult. The objective of this study was to develop a highly sensitive analysis method for vitamin D using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). 25-hydroxyvitamin D (25(OH)D), which has been used as an indicator of vitamin D metabolites in human biofluids was chemically derivatized using a secosteroid signal enhancing tag (SecoSET) with powerful dienophile and permanent positive charge. The SecoSET-derivatized 25(OH)D provided good linearity (R2 > 0.99) and sensitivity (limit of quantitation: 11.3 fmol). Chemical derivatization of deuterated 25-hydroxyvitamin D3 (d6-25(OH)D3) with SecoSET enabled absolute quantitative analysis using MALDI-MS. The highly sensitive method could be successfully applied into monitoring of quantitative changes of bioactive vitamin D metabolites after treatment with ketoconazole to inhibit 1α-hydroxylase reaction related to vitamin D metabolism in human breast cancer cells. Taken together, we developed a MALDI-MS-based platform that could quantitatively analyze vitamin D metabolites from cell products, blood and other biofluids. This platform may be applied to monitor various diseases associated with vitamin D deficiency such as rickets, osteomalacia and breast cancer.

Recent Advances in MALDI-MS Based Quantitative Targeted Glycan Analysis (MALDI-MS 기반 당단백질 당쇄의 정량분석 기술 개발 연구 동향)

  • Kim, Kyoung-Jin;Kim, Yoon-Woo;Hwang, Cheol-Hwan;Park, Han-Kyu;Jeong, Jae Hyun;Kim, Yun-Gon
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.230-238
    • /
    • 2015
  • Abnormal glycosylation can significantly affect the intrinsic functions (i.e., stability and solubility) of proteins and the extrinsic protein interactions with other biomolecules. For example, recombinant glycoprotein therapeutics needs proper glycosylation for optimal drug efficacy. Therefore, there has been a strong demand for rapid, sensitive and high-through-put glycomics tools for real-time monitoring and fast validation of the biotherapeutics glycosylation. Although liquid chromatography tandem mass spectrometry (LC-MS/MS) is one of the most powerful tools for the characterization of glycan structures, it is generally time consuming and requires highly skilled personnel to collect the data and analyze the results. Recently, as an alternative method, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS), which is a fast, robust and easy-to-use instrumentation, has been used for quantitative glycomics with various chemical derivatization techniques. In this review, we highlight the recent advances in MALDI-MS based quantitative glycan analysis according to the chemical derivatization strategies. Moreover, we address the application of MALDI-MS for high-throughput glycan analysis in many fields of clinical and biochemical engineering.

Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant

  • Yushchenko, Alexander V.;Jeong, Yeuncheol;Gopka, Vira F.;Vasil'eva, Svetlana V.;Andrievsky, Sergey M.;Yushchenko, Volodymyr O.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature $T_{eff}=4,250{\pm}50K$, the surface gravity ${\log}\;g=0.16{\pm}0.1$, the microturbulent velocity $v_{micro}=2.5km/s$, the macroturbulence velocity $v_{macro}=9km/s$ and the iron abundance $[Fe/H]=-0.73{\pm}0.11$. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.

Identification of Nandrolone and its Metabolite 5α-Estran-3β, 17α-Diol in Horse Urine after Chemical Derivatization by Liquid Chromatography Tandem Mass Spectrometry

  • Dubey, Saurabh;Beotra, Alka
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.90-97
    • /
    • 2017
  • Androgenic anabolic steroids (AASs) are synthetic derivatives of testosterone with a common structure containing cyclopentanoperhydrophenanthrene nucleus. Their use enhances the muscle building capacity and is beneficial during performance. The AASs are one of the most abused group of substances in horse doping. Liquid chromatography tandem mass spectrometry ($LC/MS^n$) has been successfully applied to the detection of anabolic steroids in biological samples. However, the saturated hydroxysteroids viz: nandrolone, $5{\alpha}-estrane-3{\beta}$, $17{\alpha}-diol$ exhibit lower detection responses in electrospray ionisation (ESI) because of their poor ionisation efficiency. To overcome this limitation pre-column chemical derivatization has been introduced to enhance their detection responses in $LC-ESI-MS^n$ analysis. The aim of present study was to develop a sensitive method for identification and confirmation of nandrolone and its metabolite in horse urine incorporating pre-column derivatization using picolinic acid. The method consists of extraction of targeted steroid conjugates by solid phase extraction (SPE). The eluted steroid conjugates were hydrolysed by methanolysis and free steroids were recovered with liquid-liquid extraction. The resulting steroids were derivatized to form picolinoyl esters and identification was done using LC-ESI-MS/MS in positive ionization mode. The picolinated steroid adduct enhanced the detection levels in comparison to underivatized steroids.

The Chemical Composition of V1719 Cyg: δ Scuti Type Star without the Accretion of Interstellar Matter

  • Yushchenko, Alexander V.;Kim, Chulhee;Jeong, Yeuncheol;Doikov, Dmytry N.;Yushchenko, Volodymyr A.;Khrapatyi, Sergii V.;Demessinova, Aizat
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.157-163
    • /
    • 2020
  • High resolution spectroscopic observation of V1719 Cyg were made at 1.8 meter telescope of Bohyunsan Optical Astronomy observatory in Korea. Spectral resolving power was R=45,000, signal to noise ratio S/N>100. The abundances of 28 chemical elements from carbon to dysprosium were found with the spectrum synthesis method. The abundances of oxygen, titanium, vanadium and elements with Z>30 are overabundant by 0.2-0.9 dex with respect to the solar values. Correlations of derived abundances with condensation temperatures and second ionization potentials of these elements are discussed. The possible influence of accretion from interstellar environment is not so strong as for ρ Pup and other stars with similar temperatures. The signs of accretion are absent. The comparison of chemical composition with solar system r- & s-process abundance patterns shows the enhancement of the photosphere by s-process elements.

Characterization of Molecular Composition of Bacterial Melanin Isolated from Streptomyces glaucescens Using Ultra-High-Resolution FT-ICR Mass Spectrometry

  • Choi, Mira;Choi, A Young;Ahn, Soo-Yeon;Choi, Kwon-Young;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • In this study, the chemical composition of bacterial melanin isolated from the Streptomyces glaucescens strain was elucidated by ultra-high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Ultra-high-resolution mass profiles of the microbial melanin product were acquired using a 15 Tesla FT-ICR mass spectrometer in positive and negative ion modes via electrospray ionization to obtain more complete descriptions of the molecular compositions of melanin-derived organic constituents. A mass resolving power of 500,000 (at m/z 400) was achieved for all spectra while collecting 400 scans per sample with a 4 M transient. The results of this analysis revealed that the melanin pigment isolated from S. glaucescens predominantly exhibits CHON and CHO species, which belong to the proteins class of compounds, with the mean C/O and C/N ratios of 4.3 and 13.1, thus suggesting that the melanin could be eumelanin. This analytical approach could be utilized to investigate the molecular compositions of a variety of natural or synthetic melanins. The compositional features of melanins are important for understanding their formation mechanisms and physico-chemical properties.