Browse > Article
http://dx.doi.org/10.5140/JASS.2020.37.3.157

The Chemical Composition of V1719 Cyg: δ Scuti Type Star without the Accretion of Interstellar Matter  

Yushchenko, Alexander V. (Astrocamp Contents Research Institute)
Kim, Chulhee (Division of Science Education, Jeonbuk National University)
Jeong, Yeuncheol (Daeyang Humanity College, Sejong University)
Doikov, Dmytry N. (Department of Mathematics, Physics, and Astronomy, Odessa National Maritime University)
Yushchenko, Volodymyr A. (Astronomical Observatory, Odessa National University)
Khrapatyi, Sergii V. (Department of Biophysics and Medical Informatics, National Taras Shevchenko University of Kyiv)
Demessinova, Aizat (Physico-Technical Department, Al Farabi Kazakh National University)
Publication Information
Journal of Astronomy and Space Sciences / v.37, no.3, 2020 , pp. 157-163 More about this Journal
Abstract
High resolution spectroscopic observation of V1719 Cyg were made at 1.8 meter telescope of Bohyunsan Optical Astronomy observatory in Korea. Spectral resolving power was R=45,000, signal to noise ratio S/N>100. The abundances of 28 chemical elements from carbon to dysprosium were found with the spectrum synthesis method. The abundances of oxygen, titanium, vanadium and elements with Z>30 are overabundant by 0.2-0.9 dex with respect to the solar values. Correlations of derived abundances with condensation temperatures and second ionization potentials of these elements are discussed. The possible influence of accretion from interstellar environment is not so strong as for ρ Pup and other stars with similar temperatures. The signs of accretion are absent. The comparison of chemical composition with solar system r- & s-process abundance patterns shows the enhancement of the photosphere by s-process elements.
Keywords
stars: individual (V1719 Cyg); stars: abundances; stars: circumstellar matter; stars: atmospheres; stars: Population I; physical data and processes: accretion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Venn KA, Lambert DL, Could the ultra-metal-poor stars be chemically peculiar and not related to the First stars, Astrophys. J. 677, 572-580 (2008). https://doi.org/10.1086/529069   DOI
2 Venn KA, Lambert DL, The chemical composition of three Lambda Bootis stars, Astrophys. J. 363, 234-244 (1990). https://doi.org/10.1086/169334   DOI
3 Yushchenko AV, URAN: a Software system for the analysis of Stellar spectra, Proceedings of the 20th Stellar Conference of the Czech and Slovak Astronomical Institutes, Brno, Czech Republic, 5-7 Nov 1997.
4 Yushchenko AV, Dorokhova TN, Gopka VF, Kim C, Lee BC, et al., The atmosphere parameters and the line profile variations of ${\rho}$ puppis, J. Korean Astron. Soc. 43, 65-74 (2010). https://doi.org/10.5303/JKAS.2010.43.3.065   DOI
5 Yushchenko AV, Gopka VF, Kang YW, Kim C, Lee BC, et al., The chemical composition of ${\rho}$ puppis and the signs of accretion in the atmospheres of B-F type stars, Astron. J. 149, A59 (2015). https://doi.org/10.1088/0004-6256/149/2/59
6 Yushchenko AV, Gopka VF, Khokhlova VL, Musaev FA, Bikmaev IF, Atmospheric chemical composition of the "twin" components of equal mass in the CP SB2 system 66 Eri, Astron. Lett. 25, 453-466 (1999).
7 Havnes O, Abundances and acceleration mechanisms of cosmic rays, Nature. 229, 548-549 (1971a). https://doi.org/10.1038/229548a   DOI
8 Burbidge EM, Burbidge GR, Fowler WA, Hoyle F, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547-650 (1957). https://doi.org/10.1103/RevModPhys.29.547   DOI
9 Alania I, uvby ${\beta}$ photometry of V1719 Cyg, Inf. Bull. Var. Stars. 2994, 1-3 (1987).
10 Bohm-Vitense E, The puzzle of the metallic line stars, Publ. Astron. Soc. Pac. 118, 419-435 (2006). https://doi.org/10.1086/499385   DOI
11 Castelli F, Kurucz R, New grids of ATLAS9 model atmospheres (2003) [Internet], viewed 2020 Feb 20, available from: https://arxiv.org/abs/astro-ph/0405087
12 Cowley CR, An examination of the planetesimal impact hypothesis of the formation of CP stars, Astrophys. Space Sci. 51, 349-362 (1977). https://doi.org/10.1007/BF006441   DOI
13 Gopka VF, Yushchenko AV, Mishenina TV, Kim C, Musaev FA, et al., Atmospheric chemical composition of the halo star HD 221170 from a synthetic-spectrum analysis, Astron. Rep. 48, 577-587 (2004). https://doi.org/10.1134/1.1777275   DOI
14 Delbouille L, Roland G, Neven L, Atlas photometrique du spectre solaire de [lambda] 3000 a [lambda] 10000, (Universite de Liege, Institut d'Astrophysique, Liege, 1973).
15 Drobyshevski EM, Peculiar A-stars and planetary systems, Astrophys. Space Sci. 35, 403-408 (1975). https://doi.org/10.1007/BF00637006   DOI
16 Fowler W, Burbidge EM, Burbidge GR, Hoyle F, The synthesis and destruction of elements in peculiar stars of types A and B, Astrophys. J. 142, 423-450 (1965). https://doi.org/10.1086/148309   DOI
17 Havnes O, Conti PS, Magnetic accretion processes in peculiar A stars, Astron. Astrophys. 14, 1-11 (1971).
18 Grevesse N, Asplund M, Sauval AJ, Scott P, The chemical composition of the Sun, Astrophys. Space Sci. 328, 179-183 (2010). https://doi:10.1007/s10509-010-0288-z   DOI
19 Grevesse N, Sauval AJ, The solar abundance of iron and the photospheric model, Astron. Astrophys. 347, 348-354 (1999).
20 Havnes O, Magnetic stars as generators of cosmic rays, Astron. Astrophys. 13, 52-57 (1971b).
21 Johnson SB, Joner MD, Revised photometric properties for the multiperiodic variable HD 200925, Publ. Astron. Soc. Pac. 98, 581-598 (1986). https://doi.org/10.1086/131798   DOI
22 Joner MD, Johnson SB, Photometric properties of HD 200925, Publ. Astron. Soc. Pac. 97, 153 (1985). https://doi.org/10.1086/131511   DOI
23 Greenstein JL, Analysis of the metallic-line stars. II., Astrophys. J. 109, 121-138 (1949). https://doi.org/10.1086/145112   DOI
24 Kim C, Yushchenko AV, Photometric properties and metallicity of V1719 cygni, J. Korean. Astron. Soc. 44, 73-79 (2011). https://doi.org/10.5303/JKAS.2011.44.3.73   DOI
25 Kurucz RL, SYNTHE Spectrum Synthesis Programs and Line Data (, Smithsonian Astrophysical Observatory, Cambridge, MA, 1993).
26 Lodders K, Solar system abundances and condensation temperatures of the elements, Astrophys. J. 591, 1220-1247 (2003). https://doi.org/10.1086/375492   DOI
27 Luck RE, Abundances in the local region. I. G and K giants, Astron. J. 150, A88 (2015). https://doi.org/10.1088/0004-6256/150/3/88
28 Pena JH, Paparo M, Peniche R, Rodriguez M, Hobart MA, et al., Physical parameter determination of the ${\delta}$ Scuti star V1719 Cygni, Publ. Astron. Soc. Pac. 114, 214-223 (2002). https://doi.org/10.1086/338623   DOI
29 Scott P, Asplund M, Grevesse N, Bergemann M, Sauval AJ, The elemental composition of the Sun. II. the iron group elements Sc to Ni, Astron. Astrophys. 573, A26 (2015). https://doi.org/10.1051/0004-6361/201424110   DOI
30 Proffitt CR, Michaud G, Abundance anomalies in A and B stars and the accretion of nuclear-processed material from supernovae and evolved giants, Astrophys. J. 345, 998-1007 (1989). https://doi.org/10.1086/167969   DOI
31 Simmerer J, Sneden C, Cowan JJ, Collier J, Woolf VM, et al., The rise of the s-process in the galaxy, Astrophys. J. 617, 1091-1114 (2004). https://doi.org/10.1086/424504   DOI