DOI QR코드

DOI QR Code

MALDI-MS-Based Quantitative Analysis of Bioactive Forms of Vitamin D in Biological Samples

  • Ahn, Da-Hee (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Hee-jin (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Seong-Min (Department of Chemical Engineering, Soongsil University) ;
  • Jo, Sung-Hyun (Department of Chemical Engineering, Soongsil University) ;
  • Jeong, Jae-Hyun (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
  • Received : 2019.09.24
  • Accepted : 2019.10.18
  • Published : 2020.02.01

Abstract

Analyzing vitamin D levels is important for monitoring health conditions because vitamin D deficiency is associated with various diseases such as rickets, osteomalacia, cardiovascular disorders and some cancers. However, vitamin D concentration in the blood is very low with optimal level of 75 nmol/L, making quantitative analysis difficult. The objective of this study was to develop a highly sensitive analysis method for vitamin D using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). 25-hydroxyvitamin D (25(OH)D), which has been used as an indicator of vitamin D metabolites in human biofluids was chemically derivatized using a secosteroid signal enhancing tag (SecoSET) with powerful dienophile and permanent positive charge. The SecoSET-derivatized 25(OH)D provided good linearity (R2 > 0.99) and sensitivity (limit of quantitation: 11.3 fmol). Chemical derivatization of deuterated 25-hydroxyvitamin D3 (d6-25(OH)D3) with SecoSET enabled absolute quantitative analysis using MALDI-MS. The highly sensitive method could be successfully applied into monitoring of quantitative changes of bioactive vitamin D metabolites after treatment with ketoconazole to inhibit 1α-hydroxylase reaction related to vitamin D metabolism in human breast cancer cells. Taken together, we developed a MALDI-MS-based platform that could quantitatively analyze vitamin D metabolites from cell products, blood and other biofluids. This platform may be applied to monitor various diseases associated with vitamin D deficiency such as rickets, osteomalacia and breast cancer.

Keywords

References

  1. Elder, C. J. and Bishop, N. J., "Rickets," The Lancet, 383(9929), 1665-1676(2014). https://doi.org/10.1016/S0140-6736(13)61650-5
  2. Bhan, A., Rao, A. D. and Rao, D. S., "Osteomalacia as a Result of Vitamin D Deficiency," Endocrinol. Metab. Clin. North Am., 39(2), 321-331(2010). https://doi.org/10.1016/j.ecl.2010.02.001
  3. Holick, M. F., "Vitamin D Deficiency," N. Engl. J. Med., 2007(357), 266-281(2007). https://doi.org/10.1056/NEJMra070553
  4. Judd, S. and Tangpricha, V., "Vitamin D Deficiency and Risk for Cardiovascular Disease," Circulation, 117(4), 503-511(2008). https://doi.org/10.1161/CIRCULATIONAHA.107.706127
  5. Atoum, M. and Alzoughool, F., "Vitamin D and Breast Cancer: Latest Evidence and Future Steps," Breast Cancer: Basic and Clinical Research, 11, 1-8(2017).
  6. Bikle, D. D., "Vitamin D Metabolism, Mechanism of Action, and Clinical Applications," Cell Chem. Biol., 21(3), 319-329(2014).
  7. Seamans, K. M. and Cashman, K. D., "Existing and Potentially Novel Functional Markers of Vitamin D Status: a Systematic Review," Am. J. Clin. Nutr., 89(6), 1997S-2008S(2009). https://doi.org/10.3945/ajcn.2009.27230D
  8. DeLuca, H. F., "Overview of General Physiologic Features and Functions of Vitamin D," Am. J. Clin. Nutr., 80(6), 1689S-1696S (2004). https://doi.org/10.1093/ajcn/80.6.1689S
  9. Holick, M. F., "Vitamin D Status: Measurement, Interpretation, and Clinical Application," Ann Epidemiol, 19(2), 73-78(2009). https://doi.org/10.1016/j.annepidem.2007.12.001
  10. van den Ouweland, J. M., Beijers, A. M., Demacker, P. N. and van Daal, H., "Measurement of 25-OH-vitamin D in Human Serum Using Liquid Chromatography Tandem-mass Spectrometry with Comparison to Radioimmunoassay and Automated Immunoassay," J. Chromatogr. B, 878(15), 1163-1168(2010). https://doi.org/10.1016/j.jchromb.2010.03.035
  11. Hedman, C. J., Wiebe, D. A., Dey, S., Plath, J., Kemnitz, J. W. and Ziegler, T. E., "Development of a Sensitive LC/MS/MS Method for Vitamin D Metabolites: 1, 25 Dihydroxyvitamin D2&3 Measurement Using a Novel Derivatization Agent," J. Chromatogr. B, 953(15), 62-67(2014).
  12. Yuan, C., Kosewick, J., He, X., Kozak, M. and Wang, S., "Sensitive Measurement of Serum $1{\alpha}$, 25-dihydroxyvitamin D by Liquid Chromatography/tandem Mass Spectrometry After Removing Interference with Immunoaffinity Extraction," Rapid Commun. Mass Spectrom., 25(9), 1241-1249(2011). https://doi.org/10.1002/rcm.4988
  13. Higashi, T., Yokota, M., Goto, A., Komatsu, K., Sugiura, T., Ogawa, S., Satoh, M. and Nomura, F., "A Method for Simultaneous Determination of 25-Hydroxyvitamin D3 and Its 3-Sulfate in Newborn Plasma by LC/ESI-MS/MS after Derivatization with a Proton-Affinitive Cookson-Type Reagent," Mass Spectorm., 5(2), S0051-S0051(2016). https://doi.org/10.5702/massspectrometry.S0051
  14. Ogawa, S., Ooki, S., Morohashi, M., Yamagata, K. and Higashi, T., "A Novel Cookson-type Reagent for Enhancing Sensitivity and Specificity in Assessment of Infant Vitamin D Status Using Liquid Chromatography/tandem Mass Spectrometry," Rapid Commun. Mass Spectrom., 27(21), 2453-2460(2013). https://doi.org/10.1002/rcm.6708
  15. Ogawa, S., Kittaka, H., Shinoda, K., Ooki, S., Nakata, A. and Higashi, T., "Comparative Evaluation of New Cookson-type Reagents for LC/ESI-MS/MS Assay of 25-hydroxyvitamin D3 in Neonatal Blood Samples," Biomed. Chromatogr., 30(6), 938-945(2016). https://doi.org/10.1002/bmc.3633
  16. Higashi, T. and Shimada, K., "Application of Cookson-type Reagents for Biomedical HPLC and LC/MS Analyses: a Brief Overview," Biomed. Chromatogr., 31(1), e3808(2017). https://doi.org/10.1002/bmc.3808
  17. Qi, B. L., Liu, P., Wang, Q. Y., Cai, W. J., Yuan, B. F. and Feng, Y. Q., "Derivatization for Liquid Chromatography-mass Spectrometry," Trac Trend. Anal. Chem., 59, 121-132(2014). https://doi.org/10.1016/j.trac.2014.03.013
  18. Aronov, P. A., Hall, L. M., Dettmer, K., Stephensen, C. B. and Hammock, B. D., "Metabolic Profiling of Major Vitamin D Metabolites Using Diels-alder Derivatization and Ultra-performance Liquid Chromatography-tandem Mass Spectrometry," Anal. Bioanal. Chem., 391(5), 1917-1930(2008). https://doi.org/10.1007/s00216-008-2095-8
  19. Kim, K. J., Kim, H. J., Park, H. G., Hwang, C. H., Sung, C., Jang, K. S., Park, S. H., Kim, B. G., Lee, Y. K. and Yang, Y. H., "A MALDIMS- based Quantitative Analytical Method for Endogenous Estrone in Human Breast Cancer Cells," Sci. Rep., 6, 24489(2016). https://doi.org/10.1038/srep24489
  20. Adamec, J., Jannasch, A., Huang, J., Hohman, E., Fleet, J. C., Peacock, M., Ferruzzi, M. G., Martin, B. and Weaver, C. M., "Development and Optimization of an LC-MS/MS-based Method for Simultaneous Quantification of vitamin D2, vitamin D3, 25- hydroxyvitamin D2 and 25-hydroxyvitamin D3," J. Sep. Sci., 34(1), 11-20(2011). https://doi.org/10.1002/jssc.201000410
  21. Vogeser, M., Kyriatsoulis, A., Huber, E. and Kobold, U., "Candidate Reference Method for the Quantification of Circulating 25-hydroxyvitamin D3 by Liquid Chromatography-tandem Mass Spectrometry," Clin. Chem., 50(8), 1415-1417(2004). https://doi.org/10.1373/clinchem.2004.031831
  22. Kim, J. H., Woenker, T., Adamec, J. and Regnier, F. E., "Simple, Miniaturized Blood Plasma Extraction Method," Anal. Chem., 85(23), 11501-11508(2013). https://doi.org/10.1021/ac402735y
  23. Holick, M. F., Binkley, N. C., Bischoff-Ferrari, H. A., Gordon, C. M., Hanley, D. A., Heaney, R. P., Murad, M. H. and Weaver, C. M., "Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline," J. Clin. Endocrinol. Metab., 96(7), 1911-1930(2011). https://doi.org/10.1210/jc.2011-0385
  24. Bischoff-Ferrari, H. A., Giovannucci, E., Willett, W. C., Dietrich, T. and Dawson-Hughes, B., "Estimation of Optimal Serum Concentrations of 25-hydroxyvitamin D for Multiple Health Outcomes," Am. J. Clin. Nutr, 84(1), 18-28(2006). https://doi.org/10.1093/ajcn/84.1.18
  25. Lensmeyer, G., Poquette, M., Wiebe, D. and Binkley, N., "The C-3 Epimer of 25-hydroxyvitamin D3 is Present in Adult Serum," J. Clin. Endocrinol. Metab., 97(1), 163-168(2012). https://doi.org/10.1210/jc.2011-0584
  26. Carter, G., Jones, J., Shannon, J., Williams, E., Jones, G., Kaufmann, M. and Sempos, C., "25-Hydroxyvitamin D assays: Potential Interference from Other Circulating Vitamin D Metabolites," J. Steroid. Biochem. Mol. Biol., 164, 134-138(2016). https://doi.org/10.1016/j.jsbmb.2015.12.018
  27. Keevil, B., "Does the Presence of 3-epi-25OHD3 Affect the Routine Measurement of Vitamin D Using Liquid Chromatography Tandem Mass Spectrometry?," Clin. Chem. Lab. Med., 50(1), 181-183(2012). https://doi.org/10.1515/cclm.2011.755
  28. Strathmann, F. G., Sadilkova, K., Laha, T. J., LeSourd, S. E., Bornhorst, J. A., Hoofnagle, A. N. and Jack, R., "3-epi-25 Hydroxyvitamin D Concentrations are Not Correlated with Age in a Cohort of Infants and Adults," Clin. Chim. Acta., 413(1-2), 203-206(2012). https://doi.org/10.1016/j.cca.2011.09.028
  29. Henry, H. L., "Regulation of Vitamin D metabolism," Best Pract. Res. Clin. Endocrinol. Metab., 25(4), 531-541(2011). https://doi.org/10.1016/j.beem.2011.05.003
  30. Jones, G., Prosser, D. E. and Kaufmann, M., "Cytochrome P450- mediated Metabolism of Vitamin D," J. Lipid Res., 55(1), 13-31(2014). https://doi.org/10.1194/jlr.R031534
  31. Townsend, K., Banwell, C. M., Guy, M., Colston, K. W., Mansi, J. L., Stewart, P. M., Campbell, M. J. and Hewison, M., "Autocrine Metabolism of Vitamin D in Normal and Malignant Breast Tissue," Clin. Cancer Res., 11(9), 3579-3586(2005). https://doi.org/10.1158/1078-0432.CCR-04-2359
  32. Hewison, M., Zehnder, D., Chakraverty, R. and Adams, J. S., "Vitamin D and Barrier Function: a Novel Role for Extra-renal $1{\alpha}$-hydroxylase," Mol. Cell. Endocrinol., 215(1-2), 31-38(2004). https://doi.org/10.1016/j.mce.2003.11.017
  33. Zehnder, D., Bland, R., Williams, M. C., McNinch, R. W., Howie, A. J., Stewart, P. M. and Hewison, M., "Extrarenal Expression of 25-hydroxyvitamin D3-$1{\alpha}$-hydroxylase," J. Clin. Endocrinol. Metab., 86(2), 888-894(2001). https://doi.org/10.1210/jcem.86.2.7220
  34. Diesing, D., Cordes, T., Fischer, D., Diedrich, K. and Friedrich, M., "Vitamin D-metabolism in the Human Breast Cancer Cell Line MCF-7," Anticancer Res., 26(4A), 2755-2759(2006).
  35. Cordes, T., Diesing, D., Becker, S., Fischer, D., Diedrich, K. and Friedrich, M., "Expression of Splice Variants of $1{\alpha}$-hydroxylase in Mcf-7 Breast Cancer Cells," J. Steroid Biochem. Mol. Biol., 103(3-5), 326-329(2007). https://doi.org/10.1016/j.jsbmb.2006.12.034
  36. Geng, S., Zhou, S. and Glowacki, J., "Effects of 25-hydroxyvitamin D3 on Proliferation and Osteoblast Differentiation of Human Marrow Stromal Cells Require CYP27B1/$1{\alpha}$-hydroxylase," J. Bone. Miner. Res., 26(5), 1145-1153(2011). https://doi.org/10.1002/jbmr.298
  37. Nguyen, M., Boutignon, H., Mallet, E., Linglart, A., Guillozo, H., Jehan, F. and Garabedian, M., "Infantile Hypercalcemia and Hypercalciuria: New Insights into a Vitamin D-dependent Mechanism and Response to Ketoconazole Treatment," J. Pediatr. 157(2), 296-302(2010). https://doi.org/10.1016/j.jpeds.2010.02.025