• Title/Summary/Keyword: chemical diversity

Search Result 257, Processing Time 0.022 seconds

Multi-Bioindicators to Assess Soil Microbial Activity in the Context of an Artificial Groundwater Recharge with Treated Wastewater: A Large-Scale Pilot Experiment

  • Michel, Caroline;Joulian, Catherine;Ollivier, Patrick;Nyteij, Audrey;Cote, Remi;Surdyk, Nicolas;Hellal, Jennifer;Casanova, Joel;Besnard, Katia;Rampnoux, Nicolas;Garrido, Francis
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.843-853
    • /
    • 2014
  • In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.

Seasonal Changes of Phytoplankton Communities in the Paksil and Jungyang Marshes (박실지와 정양지의 식물플랑크톤 군집의 계절 변동)

  • Lee, Gyeong-Rak;Choe, Jae-Sin;Kim, Han-Sun
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.273-280
    • /
    • 2003
  • The physico-chemical characteristics and seasonal variations of phytoplankton community were investigated in the Paksil and Jungyang marshes. Water and phytoplankton samples for analyses were collected monthly from April 2002 to March 2003. A total of 421 taxa of phytoplankton belonging to eight classes identified. The number of taxa was highest in Bacillariophyceae, followed by Chlorophyceae, Euglenophyceae, Cyanophyceae, Chrysophyceae, Dinophyceae, Xanthophyceae and Cryptophyceae. The standing crops ranged from 1.25 ${\times}$ $10^6$ to 5.85 ${\times}$ $10^6$ cells ${\cdot}l^{-1}$ in Paksil marsh and 0.25 to 9.63 ${\times}$ $10^6$ cells ${\cdot}l^{-1}$ in Jungyang marsh. The highest algal density at Paksil marsh was recorded in October during the high development of Chlorococcales while the lowest value occured in July. In the Jungyang marsh, the maximum algal density was recorded in October when Cryptomonas sp. and Mallomonas sp. accounted for 64% to total cell numbers and the lowest cell density was observed in January due to the decrease of Chlorophyceae. The dominant species were represented by Euglena proxima, Trachelomonas oblonga, Trachelomonas volvocina of Euglenophyceae, Dictyosphaerium pulchellum, Monoraphidium griffithii, Oocystis parva of Chlorophyceae, Dinobryon sertularia, Kephyrion rubri-claustri of Chrysophyceae, Achnanthes minutissima of Bacillariophyceae and Cryptomonas sp. of Cryptophyceae in the Paksil and Jungyang marshes. Phytoplankton diversity(H’) and dominance index varied rather irregularly throughout the sampling period but they were significantly correlated. The highest diversity(H’Paksil = 3.68, H’Jungyang = 3.63) coincided with the lowest values of dominance(DPaksil = 0.05, DJungyang = 0.05)

Bacterial Community Diversity Associated with Two Marine Sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis (남태평양에 서식하는 두 종의 해면 Hyrtios sp.와 Callyspongia sp.의 공생세균 군집의 다양성)

  • Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.255-261
    • /
    • 2010
  • The bacterial community structure associated with two marine sponges, Hyrtios sp. 604 and Callyspongia sp. 612 collected from the South Pacific Ocean were analyzed by 16S rDNA-denaturing gradient gel electrophoresis (DGGE). The phylogenetic analysis showed that the bacterial community associated with Hyrtios sp. 604 contained diverse bacterial groups such as Chloroflexi, Firmicutes, Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Acidobacteria. Callyspongia sp. 612 harbored Chloroflexi, Cyanobacteria, Alphaproteobacteria, and Gammaproteobacteria. Hyrtios sp. 604 belonging to genus Hyrtios known to produce natural products showed greater bacterial diversity than Callyspongia sp. 612. Phylum Actinobacteria was shown to be one of dominant bacterial groups in Hyrtios sp. 604. Although the same phyla of bacteria were found in both sponge species, the spongeassociated predominant bacterial groups differed between the two sponges with different chemical characteristics from the same geographical location. Uncultured bacteria represented over 90% of the bacteria diversity present in all bacterial communities of the sponges.

Development of kNN QSAR Models for 3-Arylisoquinoline Antitumor Agents

  • Tropsha, Alexander;Golbraikh, Alexander;Cho, Won-Jea
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2397-2404
    • /
    • 2011
  • Variable selection k nearest neighbor QSAR modeling approach was applied to a data set of 80 3-arylisoquinolines exhibiting cytotoxicity against human lung tumor cell line (A-549). All compounds were characterized with molecular topology descriptors calculated with the MolconnZ program. Seven compounds were randomly selected from the original dataset and used as an external validation set. The remaining subset of 73 compounds was divided into multiple training (56 to 61 compounds) and test (17 to 12 compounds) sets using a chemical diversity sampling method developed in this group. Highly predictive models characterized by the leave-one out cross-validated $R^2$ ($q^2$) values greater than 0.8 for the training sets and $R^2$ values greater than 0.7 for the test sets have been obtained. The robustness of models was confirmed by the Y-randomization test: all models built using training sets with randomly shuffled activities were characterized by low $q^2{\leq}0.26$ and $R^2{\leq}0.22$ for training and test sets, respectively. Twelve best models (with the highest values of both $q^2$ and $R^2$) predicted the activities of the external validation set of seven compounds with $R^2$ ranging from 0.71 to 0.93.

Ecological Comparisons of Stream Conditions Between the Unimpacted and Impacted Sites: Case Study

  • Lee, Jae-Hoon;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.441-448
    • /
    • 2008
  • The purpose of this study was to analyze chemical water quality, fish trophic guilds, tolerance indicators, and fish community conditions in the Gap Stream and to compare the stream conditions between the unimpacted site and impacted site. This study was conducted in the physically stable season (May 2008) to minimize physical impacts such as flow and hydrological disturbance, and applied the study in the Gap Stream with two sites of unimpacted upstream site (Unim-S), mainly surrounded by forested area and impacted site (Im-S), influenced by the wastewater disposal plants and industrial complex in the urban region. Chemical data analysis showed that the degree of organic matter pollution, based on BOD, and COD, was $2{\sim}3$ fold greater in the Im-S than the Unim-S, and that TP, as eutrophication indicators, was 4.7 fold greater in the Im-S. Also, $NH_3-N$ was in 8.2 fold greater in the Im-S ($6.25\;mg\;L^{-1}$) than the Unim-S ($0.76\;mg\;L^{-1}$), indicating a massive influence of wastewater from the disposal plant. Similar results were found in other chemical parameters. Thus, chemical impacts in the Im-S were evident, compared to the unimpacted site. Evaluations of tolerant indicator species indicated that sensitive species were dominant in the Unim-S (23.9%) and tolerant species were dominant (97.8%) in the Im-S. Condition factor (CF) was averaged 0.95 ($0.68{\sim}1.18$) in the Unim-S and 1.08 ($0.93{\sim}1.22$) in the Im-S. Fish community in the Unim-S and Im-S was categorized as Zacco-community and Hemibarbus-community, respectively, and the community diversity index (H') was significantly (p<0.05) higher in the Unim-S (0.810) than the Im-S (0.466). Overall, our results suggest that the comparison approach of various chemical and ecological indicators provide important information in identifying multiple stressors in the stream ecosystems.

Response of Microbe to Chemical Properties from Orchard Soil in Gyeongnam Province (경남지역 과수원 토양 화학성분이 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.236-241
    • /
    • 2011
  • Soil microbial diversity was responsible for a strong effect on the chemical properties of orchard soils. This study evaluated a relationship between soil chemical properties and soil microbial diversities at 25 sites in orchard soils in Gyeongnam Province. The average nutrients in the orchard soils were 2.6 times for available phosphorous, 2.3 times for exchangeable potassium and 1.3 times for exchangeable calcium higher compared to recommend concentrations in the orchard soils. Contents of available phosphorous and organic matter in the inclined piedmont soils were higher than those in the other topographical soils (p<0.05). Populations of fungi and fluorescence Pseudomonas sp. in the silt loam soils were significantly higher than those in the sandy loam soils (p<0.05). In principal component analysis of chemical properties and microbial populations in the upland soils, our findings suggested that population of bacteria should be considered as potential factor responsible for the clear orchard soils differentiation. The soil organic matter was significantly negative correlation with population of bacteria whereas was positive correlation with population of fungi in orchard soils.

A Systematic NMR Determination of α-D-Glucooligosaccharides, Effect of Linkage Type, Anomeric Configuration and Combination of Different Linkages Type on 13C Chemical Shifts for the Determination of Unknown Isomaltooligosaccharides

  • Goffin, Dorothee;Bystricky, Peter;Shashkov, Alexander S.;Lynch, Mary;Hanon, Emilien;Paquot, Michel;Savage, Angela V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2535-2541
    • /
    • 2009
  • Prebiotic isomaltooligosaccharide preparations contain $\alpha$-D-glucooligosaccharides comprising isomaltooligosaccharides (IMOs) and non-prebiotic maltooligosaccharides (MOs). They are both glucose oligosaccharides characterized by their degree of polymerization (DP) value (from 2 to $\sim$10), linkages types and positions (IMOs: $\alpha$-(1$\rightarrow$2, 3, 6 and in a lower proportion internal 1$\rightarrow$4) linkages, MOs: α-(1$\rightarrow$4) linkages). Their structure is the key factor for their prebiotic potential. In order to determine and elucidate the exact structure of unknown IMOs and MOs, unambiguous assignments of $^{13}C$ and $^1H$ chemical shifts of commercial standards, representative of IMOs and MOs diversity, have been determined using optimized standard one and two-dimensional experiments such as $^1H$ NMR, $^{13}C$ NMR, APT and ${^1}H-{^1}H$ COSY, TOCSY, NOESY and <$^1H-{^{13}}C$ heteronuclear HSQC, HSQC-TOCSY, and HMBC. Here we point out the differential effect of substitution by a glucose residue at different positions on chemical shifts of anomeric as well as ring carbons together with the effect of the reducing end configuration for low DP oligosaccharides and diasteroisotopic effect for H-6 protons. From this study, structural $^{13}C$ specific spectral features can be identified as tools for structural analysis of isomaltooligosaccharides.

Species Diversity of Riparian Vegetation by Soil Chemical Properties and Water Quality in the Upper Stream of Mankyeong River (만경강 상류 수질 및 식생분포와 토양환경에 따른 하천식생의 종 다양성)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Lee, Deog-Bae;Kim, Jong-Gu;Park, Chan-Won;Na, Seoung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.100-110
    • /
    • 2003
  • This study was conducted to evaluate influence of chemical properties in the riparian on the species diversity and to get plant information for enhancement of natural purification in Mankyeong River. The concentration of total nitrogen was high in Jeonju and Sam stream, while that of total nitrogen showed the highest peak in Winter. Concentrations of $NH_4-N$ was $0.01{\sim}0.06\;mg/L$ in Gosan and Soyang stream. The water quality of upstream along with Mankyeong River was suitable for the irrigation source. The riparian vegetation was investigated by Zurich-Montpellier school's method from June, 2001 to September, 2002. The number of riparian plants were 59 families, 129 genera, 165 species, 20 varieties in Gosancheon, on the while 53 families, 111 genera, 141 species, 19 varieties in Soyangcheon. The number of riparian plants in Bari basin was higher than that of other sites namely, 73 families, 134 genera, 218 species, 33 varieties. Riparian vegetation was consisted of 12 plant communities. The contents of organic matter, total nitrogen and electrical conductivity had negative relationship with species diversity (Species richness index, Heterogeneity index, Species evenness index Species number). On the while, species diversity had positive relationship with soil pH. Species diversify of the plant communities were affected by topography and disturbance.

Establishment of Environmental Assessment using Sediment Total Organic Carbon and Macrobenthic Polychaete Community in Shellfish Farms (퇴적물 총유기탄소와 저서 다모류 군집을 이용한 패류양식장의 환경평가 기준설정)

  • Cho, Yoon-Sik;Lee, Won-Chan;Kim, Jeong-Bae;Hong, Sok-Jin;Kim, Hyung-Chul;Kim, Chung-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.430-438
    • /
    • 2013
  • In this study, the seasonal field survey was conducted in Goseong Jaran Bay(22 stations), Geoje Hansan Bay(15 stations) and Jinhae Bay(18 stations). We analyzed the sediment environmental parameters(Chemical Oxygen Demand, Ignition Loss, Acid Volatile Sulfides, Total Organic Carbon) and biotic parameters of macrobenthic polychaetes(number of species, density, diversity, evenness). It had a good correlation between total organic carbon and polychaete diversity(R=0.61, P<0.01), and we made a decision them as representative environmental indices. As a result of that, regarding the criteria in the assessment of farm environment, we suggest concentrations of total organic carbon : Peak Point = 15 mg/g dry, Warning Point = 26 mg/g dry, Contaminated Point = 31 mg/g dry and polychaete diversity : ~2.6(Good), 2.6~2.1(Moderate), 2.1~1.2(Poor) and 1.2~(Bad). This could be a scientific basis to establish the environmental standards for fishery management.

Change in Biodiversity and Community Structures in Agricultural Fields depending on Different Farming Methods (농법 차이에 따른 농경지 생태계의 생물 다양성 및 군집 구조의 변화)

  • Kim, Hoon;Kim, Kyo-Jin;Sun, Yan;Jo, Young-Ju;Kim, Tae-Yeon;Moon, Myung-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.687-706
    • /
    • 2018
  • Organic agriculture is well known to be not only affecting the physical and chemical status of the soil but also closely connected to the biodiversity through complex community structure and ecological interactions. Current study monitored and analyzed the invertebrate biodiversity of organic and conventional paddy fields and upland fields from April, 2017 to August, 2017. Total of 680 species (with 14,371 individuals) were confirmed - more number of species were identified at the organic agriculture practicing fields. According to the various indices analysis, organic paddy field showed about 40% higher diversity index, while organic upland field showed about 10% higher diversity index. Richness index at organic paddy field was 60% higher compared to conventional paddy field, while organic upland field showed 40% higher value. Dominance and evenness index at conventional agriculture practicing fields were low, which possibly indicate at least partial dominance phenomenon. Hemipteran, dipteran and aranean species showed highest diversity in all fields, while dipteran, hemipteran, aranean and coleopteran species had highest diversity in conventional agriculture practicing fields.