Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.11.2535

A Systematic NMR Determination of α-D-Glucooligosaccharides, Effect of Linkage Type, Anomeric Configuration and Combination of Different Linkages Type on 13C Chemical Shifts for the Determination of Unknown Isomaltooligosaccharides  

Goffin, Dorothee (Unité de Chimie Biologique Industrielle, Unité de Technologie des Industries Agro-alimentaires)
Bystricky, Peter (Centre for BioAnalytical Sciences, Department of Chemistry, National University of Ireland, Galway, University Road)
Shashkov, Alexander S. (N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences)
Lynch, Mary (Centre for BioAnalytical Sciences, Department of Chemistry, National University of Ireland, Galway, University Road)
Hanon, Emilien (Faculté Universitaire des Sciences Agronomiques de Gembloux, Unité de Chimie Générale et Organique)
Paquot, Michel (Faculté Universitaire des Sciences Agronomiques de Gembloux, Unité de Chimie Biologique Industrielle)
Savage, Angela V. (Centre for BioAnalytical Sciences, Department of Chemistry, National University of Ireland, Galway, University Road)
Publication Information
Abstract
Prebiotic isomaltooligosaccharide preparations contain $\alpha$-D-glucooligosaccharides comprising isomaltooligosaccharides (IMOs) and non-prebiotic maltooligosaccharides (MOs). They are both glucose oligosaccharides characterized by their degree of polymerization (DP) value (from 2 to $\sim$10), linkages types and positions (IMOs: $\alpha$-(1$\rightarrow$2, 3, 6 and in a lower proportion internal 1$\rightarrow$4) linkages, MOs: α-(1$\rightarrow$4) linkages). Their structure is the key factor for their prebiotic potential. In order to determine and elucidate the exact structure of unknown IMOs and MOs, unambiguous assignments of $^{13}C$ and $^1H$ chemical shifts of commercial standards, representative of IMOs and MOs diversity, have been determined using optimized standard one and two-dimensional experiments such as $^1H$ NMR, $^{13}C$ NMR, APT and ${^1}H-{^1}H$ COSY, TOCSY, NOESY and <$^1H-{^{13}}C$ heteronuclear HSQC, HSQC-TOCSY, and HMBC. Here we point out the differential effect of substitution by a glucose residue at different positions on chemical shifts of anomeric as well as ring carbons together with the effect of the reducing end configuration for low DP oligosaccharides and diasteroisotopic effect for H-6 protons. From this study, structural $^{13}C$ specific spectral features can be identified as tools for structural analysis of isomaltooligosaccharides.
Keywords
Isomaltooligosaccharides; $^{13}C$ NMR; Glycosylation effect; Effect of anomeric configuration; 2D NMR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Perlin, A. S.; Casu, B.; Koch, H. J. Can. J. Chem. 1970, 48, 2596-2606   DOI
2 Fukushi, E. Biosci. Biotechnol. Biochem. 2006, 70,1803-1812   DOI   ScienceOn
3 Bax A.; Summers, M. F.; J. Am. Chem. Soc. 1986, 108, 2093-2094   DOI
4 Summers, M. F.; Marzilli, L. G.; Bax, A. J. Am. Chem. Soc. 1986, 108, 4285-4294   DOI
5 Takahashi, S.; Nagayama, K. J. Magn. Reson. 1988, 76, 347-351
6 Gorin, P. A. J. Carbohydr. Res. 1975, 39, 3-10   DOI   ScienceOn
7 Usui, T.; Yokoyama, M.; Yamaoka, M.; Matsuda, K.; Tuzimura, K. Carbohydr. Res. 1974, 33, 105-116   DOI   ScienceOn
8 Delben, F.; Forabosco, A.; Guerrini, M.; Liut, G.; Torri, G. Carbohydr. Pol. 2006, 63, 545-554   DOI   ScienceOn
9 Jansson, P.-E.; Kenne, L.; Kolare, I. Carbohydr. Res. 1994, 257, 163-176   DOI   ScienceOn
10 Deshmukh, M. M.; Bartolotti, L. J.; Gadre, S. R. J. Phys. Chem. A 2008, 112, 312-321   DOI   ScienceOn
11 Grant, D. M.; Cheney, B. V. J. Am. Chem. Soc. 1967, 89, 5315-5318   DOI
12 Cheney, B. V. J. Am. Chem. Soc. 1968, 90, 5386-5390   DOI
13 Buchanan, G. W.; Stothers, B.; Wu, S. Can. J. Chem. 1969, 47, 3113-3118   DOI
14 Lauterbur, P. C. J. Am. Chem. Soc. 1961, 83, 1838-1846   DOI
15 Stothers, J. B. Quart. Rev. 1965, 19, 144   DOI
16 Lipkind, G. M.; Shashkov, A. S.; Knirel, Y. A.; Vinogradov, E. V.; Kochetkov, N. K. Carbohydr. Res. 1988, 175, 59-75   DOI   ScienceOn
17 Lopez de la Paz, M.; Ellis, G.; Perez, M.; Perkins, J.; Jimenez-Barbero, J.; Vicent, C. Eur. J. Org. Chem. 2002, 840-855
18 Yun, J.; Lee, M.; Song, S. Biotechnol. Lett. 1994, 16, 1145-1150   DOI   ScienceOn
19 Jansson, P.-E.; Kenne, L.; Schweda, F. J. Chem. Soc. Perkin Trans. 1 1988, 2729-2736
20 Adeyeye, A.; Jansson, P.-E.; Kenne, L.; Widmalm, G. J. Chem. Soc. Perkin Trans. 2 1991, 963-973
21 Kuriki, T.; Yanase, M.; Takata, H.; Takesada, Y.; Imanaka, T.; Okada, S. Appl. Environ. Microbiol. 1993, 59, 953-959
22 Christofides, J. C.; Davies, D. B. J. Am. Chem. Soc. 1983, 105(15), 5099-5105   DOI   ScienceOn
23 Best, R. B.; Jackson, G. E.; Naidoo, K. J. J. Phys. Chem. B 2001, 105, 4742-4751   DOI   ScienceOn
24 Bock, K.; Pedersen, C. Adv. Carbohydr. Chem. Biochem. 1983, 41, 27-66   DOI
25 Bock, K.; Th$\phi$gersen, H. Ann. Rep. NMR Spectrosc. 1982, 13, 2-57
26 Backman, I.; Erbing, B.; Jansson, P.-E.; Kenne, L. J. Chem. Soc., Perkin Trans. 1 1988, 889-898
27 Gu, Q.; Yang, Y.; Jiang, G.; Chang, G. J. Hyg. Res. 2003, 32, 54-55
28 Pereira, C. S.; Kony, D.; Baron, R.; Muller, M.; van Gunsteren, W. F.; Hunenberger, P. H. Biophysical Journal 2006, 90, 4337-4344   DOI   ScienceOn
29 Dowd, M. K.; Zeng, J.; French, A. D.; Reilly, P. J. Carbohydr. Res. 1992, 230, 223-244   DOI   ScienceOn
30 McCleary, B.; Gibson, T. Carbohydr. Res. 1989, 185, 147-162   DOI   ScienceOn
31 Sanz, M.; Gibson, G.; Rastall, R. J. Agric. Food Chem. 2005, 53, 5192-5199   DOI   ScienceOn
32 Kaneko, T.; Yokoyama, A.; Suzuki, M. Biosci. Biotechnol. Biochem. 1995, 59, 1190-1194   DOI   ScienceOn
33 Kohmoto, T.; Fukui, F.; Takaku, H.; Machida, Y.; Arai, M.; Mitsuoka, T. Bifidobacteria Microflora 1988, 7, 61-69   DOI
34 Rycroft, C.; Jones, M.; Gibson, G.; Rastall, R. J. Appl. Microbiol. 2001, 91, 878-887   DOI   ScienceOn
35 Delzenne, N.; Williams, C. Curr. Opin. Lipidol. 2002, 13, 61-67   DOI   ScienceOn
36 Pazur, J.; French, D. J. Biol. Chem. 1951, 2020, 265-272
37 Wang, X.; Rakshit, S. Process Biochem. 2000, 35, 771-775   DOI   ScienceOn
38 Kato, N.; Suyama, S.; Shirokane, M.; Kato, M.; Kobayashi, T.; Tsukagoshi, N. Appl. Environ. Microbiol. 2002, 68, 1250-256   DOI
39 Chen, W.; Hung, T.; Lee, S. Biotechnol. Lett. 1997, 19, 949-951   DOI   ScienceOn
40 van Leeuwen, S. S.; Leeflang, B. R.; Gerwig, G. J.; Kamerling, J. P. Carbohydr. Res. 2008, 343, 1114-1119   DOI   ScienceOn
41 Yoon, E. Y. Bull. Korean Chem. Soc. 2003, 24, 339-344   DOI   ScienceOn
42 Edward, J. T. Chem. Ind. (London) 1955, 1102-1104