• Title/Summary/Keyword: chelation

Search Result 144, Processing Time 0.02 seconds

Peroxidase and Photoprotective Activities of Magnesium Protoporphyrin IX

  • Kim, Eui-Jin;Oh, Eun-Kyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2014
  • Magnesium-protoporphyrin IX (Mg-PPn), which is formed through chelation of protoporphyrin IX (PPn) with Mg ion by Mg chelatase, is the first intermediate for the (bacterio)chlorophyll biosynthetic pathway. Interestingly, Mg-PPn provides peroxidase activity (approximately $4{\times}10^{-2}units/{\mu}M$) detoxifying $H_2O_2$ in the presence of electron donor(s). The peroxidase activity was not detected unless PPn was chelated with Mg ion. Mg-PPn was found freely diffusible through the membrane of Escherichia coli and Vibrio vulnificus, protecting the cells from $H_2O_2$. Furthermore, unlike photosensitizers such as tetracycline and PPn, Mg-PPn did not show any phototoxicity, but rather it protected cell from ultraviolet (UV)-A-induced stress. Thus, the exogenous Mg-PPn could be used as an antioxidant and a UV block to protect cells from $H_2O_2$ stress and UV-induced damage.

Micro Pre-concentration and Separation of Metal Ions Using Microchip Column Packed with Magnetic Particles Immobilized by Aminobenzyl Ethylenediaminetetraacetic Acid

  • Kim, Y.H.;Kim, G.Y.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.905-909
    • /
    • 2010
  • Magnetic beads (Dynabeads$^{(R)}$) embedded in ~1 micron size polystyrene beads bearing surface carboxylic acid groups were modified with aminobenzyl ethylenediaminetetraacetic acid (ABEDTA) to concentrate or separate metal ions using pH gradients on micro and nano scales. The immobilization of ABEDTA was achieved by amide formation. The presence of the metal chelating functional group in the fully deprotonated form was confirmed by FT-IR. The chelation efficiency of beads was tested by determining metal ions in supernatant using GFAAS when pH gradients from 3 to 7. Mixtures of Cu and Mg and of Cd and Mn (at 10 ng/mL of metal) were separated as the difference in formation constant with the functional group of ABEDTA. The separation was repeated twice with relative standard deviation of <18%. A polydimethylsiloxane (PDMS) microchip column packed with EDTA-coated magnetic beads was optimized to concentrate metal ion for practical applications by eluting a Cu solution of micro scale at pH 3.

Isolation of Calcium-Binding Peptides from Barley Protein Hydrolysates (보리 단백질 가수분해물로부터 칼슘 결합 물질의 분리)

  • Lee, Ji-Hye;Choi, Dong-Won;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.438-442
    • /
    • 2012
  • To prepare calcium-binding peptides as calcium supplement, barley proteins were hydrolyzed using Flavourzyme for 18 h and the hydrolysates were ultra-filtered under 3 kDa as a molecular weight. The resultant filtered peptides were fractionated using ion exchange and normal-phase high performance liquid chromatography. Then each fraction that was obtained was determined for its calcium-binding activity to isolate the calcium-binding peptides. As a result, the highest calcium-binding peptide fraction was obtained, and the results suggest that barley protein hydrolysates can be used as a calcium supplement.

A Carbazole-Attached NO2S2-Macrocycle Exhibiting Hg2+ and Cu2+ Selectivity

  • Lee, Seul-Gi;Kang, Eun-Ju;Lee, Shim Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1429-1434
    • /
    • 2013
  • A synthesis and cation-induced fluorescent behavior of the carbazole-attached $NO_2S_2$-macrocycle (L) is described and structurally characterized by single crystal X-ray analysis. The photoluminescence spectrum of L in 80% $CH_3CN/CH_2Cl_2$ displays a peak maximum at 431 nm (blue emission). In the metal-induced fluorometric experiment, L showed a drastic chelation-enhanced fluorescence quenching (CHEQ) effect only with $Hg^{2+}$ and $Cu^{2+}$. In ESI-mass study, a 1:1 stoichiometry for complexation of L with $Hg^{2+}$ was confirmed, suggesting the unique sensing behavior of the proposed ligand L due to the selective complexation affinity for $Hg^{2+}$. The observed results indicate that L is a promising turn-off type fluoroionophore for $Hg^{2+}$ and $Cu^{2+}$ detections. Additionally, the $Ag^+$ complex of the precursor macrocycle was prepared and its solid structure was crystallographically characterized.

Melanin: A Naturally Existing Multifunctional Material (자연계에 존재하는 다기능성 소재 : 멜라닌)

  • Eom, Taesik;Woo, Kyungbae;Shim, Bong Sup
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • Melanin is a common name used for a certain type of natural dark pigments existing in living organisms, particularly in human hair, eyes, and skin. The unique free radical scavenging effect of melanine could help protecting cells and tissues from harmful UV light. While their exact molecular structures in nature are not still well defined, their multifunctional properties including electrical and ionic conductivities, antioxidation, wet adhesion, and metal ion chelation, are highlighted for the potential applications in bioorganic electronics including biomedical sensors and devices. In this mini-review, we will discuss sources, synthesis methods, structures and multifunctional properties of melanin materials in addition to current research directions on a wide range of applications.

The Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 3-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Eum, Ik Hwan;Lee, Seong Eun;Min, Ji Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.673-677
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the reactions of 8-(5-nitroquinolyl) 3-furoate with alkali metal ethoxides in anhydrous ethanol. The plot of kobs vs the concentration of alkali metal ethox ides is linear for the reactions performed in the presence of a complexing agent, 18-crown-6 ether, but exhibits upward curvatures for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions in this study behave as catalysts. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M + ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M + /kEtO-) was found to be 1.7, 3.4 and 2.5 for the reaction of 8-(5-nitroquinolyl) 3-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, 1.8, 3.7 and 2.4 for that of 8-(5-nitroquinolyl) benzoate, and 2.0, 9.8 and 9.3 for that of 8-(5-nitroquinolyl) 2-furoate with EtO- Li+ , EtO- Na+ and EtO- K+ , respectively. A 5-membered chelation at the leaving group is suggested to be responsible for the catalytic effect shown by alkali metal ions.

Adsorption of copper ions from aqueous solution using surface modified pine bark media (표면개질된 소나무 수피를 이용한 수용액의 구리이온 흡착)

  • Park, Se-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • This study used a packed column reactor and a horizontal flow mesh reactor to examine the removal of copper ions from aqueous solutions using pine bark, a natural adsorbent prepared from Korean red pine (Pinus densiflora). Both equilibrium and nonequilibrium adsorption experiments were conducted on copper ion concentrations of 10mg/L, and the removals of copper ions at equilibrium were close to 95%. Adsorption of copper ions could be well described by both the Langmuir and Freundlich adsorption isotherms. The bark was treated with nitric acid to enhance efficiency of copper removal, and sorption capacity was improved by about 48% at equilibrium; mechanisms such as ion exchange and chelation may have been involved in the sorption process. A pseudo second-order kinetic model described the kinetic behavior of the copper ion adsorption onto the bark. Regeneration with nitric acid resulted in extended use of spent bark in the packed column. The horizontal flow mesh reactor allowed approximately 80% removal efficiency, demonstrating its operational flexibility and the potential for its practical use as a bark filter reactor.

Effects of Copper (II) Treatment in Soil on Tetracycline Toxicity to Growth of Lettuce (Lactuca sativa L.) (토양에서 상추의 생장에 대한 Tetracycline의 독성에 미치는 구리 (II)의 효과)

  • Lee, Byeongjoo;Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • Tetracycline (TC) groups, widely used veterinary antibiotics, can enter into environment through animal manure application. TC forms a ligand complex with multivalent metal cations via chelation that can affect sorption and mobility of TC in soil. So far, however, it has been confirmed through the reaction of the soil outside in the aqueous solution and the evaluation of the performance in the soil cultivation process is insufficient. The purpose of this study was to examine effects of copper on TC toxicity to lettuce growth. In this research, $750mg\;kg^{-1}$ of TC and 2.5, 7.5, $17.5mg\;kg^{-1}$ of Cu are treated in soil and lettuce was cultivated in the treated soil. Growth difference of lettuce by treatment was observed. As a result, $750mg\;kg^{-1}$ of TC treated soil showed toxic effect to lettuce and the effect is alleviated by copper treatment.

Preparation for Calcium and Iron-binding Peptides from Rice Bran Protein Hydrolysates (미강 단백질 가수분해물로부터 Ca, Fe 결합된 peptide 제조)

  • Jeon, So-Jeong;Lee, Ji-Hye;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.174-178
    • /
    • 2010
  • Calcium and iron binding peptides were prepared by enzymatic hydrolysis and ultrafiltration of rice bran protein (RBP), which was isolated from defatted rice bran by phytase and xylanase treatment and ultrasonication. The isolated RBP had a molecular weight in the range of 10-66 kDa. The extracted proteins were hydrolyzed using Flavourzyme for 6 hr. After ultrafiltration under 5 kDa as molecular weight, the peptides were fractionated into 4 peaks by Sephadex G-15 gel permeation chromatography, and each fraction was determined for calcium and iron binding activity. As the result, Fl and F2 fractions were the best candidate for calcium and iron chelation, respectively. These results suggest that the calcium and iron binding peptides can be used as functional food additives in food industry.

Low Pressure Hybrid Membrane Processes for Drinking Water Treatment (저압 막여과 혼성공정을 이용한 고도 정수처리)

  • Choo, Kwang-Ho;Chung, Ji-Hyun;Park, Hak-Soon
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.161-173
    • /
    • 2007
  • Membrane filtration processes are increasingly popular for drinking water treatment that requires high quality of water. Low pressure membrane(LPM) processes such as microfiltration(MF) and ultrafiltration(UF), however, are ineffective in the removal of dissolved organic matter and also membrane fouling is still an important issue to be resolved. High pressure membranes(HPMs) may guarantee better water quality, but at the high energy consumption. Thus, various approaches to combine LPM processes with other physicochemical methods have been recently made to achieve their efficiency to the level comparable to that of HPM processes. In this work, therefore, hybrid processes that coupled MF/UF with coagulation, adsorption, chemical reactions(e.g., chelation and oxidation) are reviewed regarding system design and performance and also membrane surface modifications conducted by grafting and polyelectrolyte multilayer formation were assessed.