Browse > Article
http://dx.doi.org/10.14478/ace.2016.1029

Melanin: A Naturally Existing Multifunctional Material  

Eom, Taesik (Department of Chemical Engineering, Inha University)
Woo, Kyungbae (Department of Chemical Engineering, Inha University)
Shim, Bong Sup (Department of Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.27, no.2, 2016 , pp. 115-122 More about this Journal
Abstract
Melanin is a common name used for a certain type of natural dark pigments existing in living organisms, particularly in human hair, eyes, and skin. The unique free radical scavenging effect of melanine could help protecting cells and tissues from harmful UV light. While their exact molecular structures in nature are not still well defined, their multifunctional properties including electrical and ionic conductivities, antioxidation, wet adhesion, and metal ion chelation, are highlighted for the potential applications in bioorganic electronics including biomedical sensors and devices. In this mini-review, we will discuss sources, synthesis methods, structures and multifunctional properties of melanin materials in addition to current research directions on a wide range of applications.
Keywords
melanin; eumelanin; polydopamine; natural pigments; biocompatible; bioorganic electronics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. Solano, Melanins: Skin pigments and much more-types, structural models, biological functions, and formation routes, New J. Sci., 2014, 1-28 (2014).
2 V. P. Grishchuk, S. A. Davidenko, I. D. Zholner, A. B. Verbitskii, M. V. Kurik, and Y. P. Piryatinskii, Optical absorption and luminescent properties of melanin films, Tech. Phys. Lett., 28(11), 896-898 (2002).   DOI
3 V. Capozzi, G. Perna, P. Carmone, A. Gallone, M. Lastella, E. Mezzenga, G. Quartucci, M. Ambrico, V. Augelli, P. F. Biagi, T. Ligonzo, A. Minafra, L. Schiavulli, M. Pallara, and R. Cicero, Optical and photoelectronic properties of melanin, Thin Solid Films, 511, 362-366 (2006).
4 M. R. Powell and B. Rosenberg, The nature of the charge carriers in solvated biomacromolecules: DNA and water, Biopolymers, 9(11), 1403-1406 (1970).   DOI
5 J. E. McGinness, Mobility gaps: A mechanism for band gaps in melanins, Science, 177(4052), 896-897 (1972).   DOI
6 J. McGinness, P. Corry, and P. Proctor, Amorphous semiconductor switching in melanins, Science, 183(4127), 853-855 (1974).   DOI
7 P. B. Capelletti, P. R. Crippa, and N. Romeo, Electrical characteristics and electret behavior of melanin, ECS J. Solid State Sci. Technol., 126(7), 1207-1212 (1979).
8 W. Osak, K. Tkacz, H. Czternastek, and J. Slawinski, I - V Characteristics and electrical conductivity of synthetic melanin, Biopolymers, 28(11), 1885-1890 (1989).   DOI
9 T. Ligonzo, M. Ambrico, V. Augelli, G. Perna, L. Schiavulli, M. A. Tamma, P. F. Biagi, A. Minafra, and V. Capozzi, Electrical and optical properties of natural and synthetic melanin biopolymer, J. Non-Cryst. Solids, 355(22-23), 1221-1226 (2009).   DOI
10 Y. Liu, K. Ai, and L. Lu, Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev., 114(9), 5057-5115 (2014).   DOI
11 I. G. Kim, H. J. Nam, H. J. Ahn, and D.-Y. Jung, Electrochemical growth of synthetic melanin thin films by constant potential methods, Electrochim. Acta, 56(7), 2954-2959 (2011).   DOI
12 K. Kang, S. Lee, R. Kim, I. S. Choi, and Y. Nam, Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces, Angew. Chem. Int. Ed., 51(52), 13101-13104 (2012).   DOI
13 Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices, Proc. Natl. Acad. Sci. USA, 110(52), 20912-20917 (2013).   DOI
14 M. L. Wolbarsht, A. W. Walsh, and G. George, Melanin, a unique biological absorber, Appl. Opt., 20(13), 2184-2186 (1981).   DOI
15 M. A. Rosei, L. Mosca, and F. Galluzzi, Photoelectronic properties of synthetic melanins, Synth. Met., 76(1-3), 331-335 (1996).   DOI
16 A. B. Mostert, B. J. Powell, F. L. Pratt, G. R. Hanson, T. Sarna, I. R. Gentle, and P. Meredith, Role of semiconductivity and ion transport in the electrical conduction of melanin, Proc. Natl. Acad. Sci. USA, 109(23), 8943-8947 (2012).   DOI
17 C.-T. Chen, V. Ball, J. J. de Almeida Gracio, M. K. Singh, V. Toniazzo, D. Ruch, and M. J. Buehler, Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: Experiment, simulation, and design, ACS Nano, 7(2), 1524-1532 (2013).   DOI
18 T.-F. Wu and J.-D. Hong, Synthesis of water-soluble dopamine-melanin for ultrasensitive and ultrafast humidity sensor, Sens. Actuators B Chem., 224, 178-184 (2016).   DOI
19 M. P. da Silva, J. C. Fernandes, N. B. de Figueiredo, M. Congiu, M. Mulato, and C. F. de Oliveira Graeff, Melanin as an active layer in biosensors, AIP Adv., 4(3), 037120-1-8 (2014).   DOI
20 F. Bernsmann, B. Frisch, C. Ringwald, and V. Ball, Protein adsorption on dopamine-melanin films: Role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption, J. Colloid Interface Sci., 344(1), 54-60 (2010).   DOI
21 M. D. Rubianes, A. Sanchez Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, and G. Rivas, Carbon nanotubes paste electrodes modified with a melanic polymer: Analytical applications for the sensitive and selective quantification of dopamine, Sens. Actuators B Chem., 144(1), 274-279 (2010).   DOI
22 Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells, Adv. Mater., 26(38), 6572-6579 (2014).   DOI
23 W. Dong, Y. Wang, C. Huang, S. Xiang, P. Ma, Z. Ni, and M. Chen, Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin, J. Therm. Anal. Calorim., 115(2), 1661-1668 (2014).   DOI
24 M. Xiao, Y. Li, M. C. Allen, D. D. Deheyn, X. Yue, J. Zhao, N. C. Gianneschi, M. D. Shawkey, and A. Dhinojwala, Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles, ACS Nano, 9(5), 5454-5460 (2015).   DOI
25 T.-F. Wu and J.-D. Hong, Dopamine-melanin nanofilms for biomimetic structural coloration, Biomacromolecules, 16(2), 660-666 (2015).   DOI
26 C. C. Felix, J. S. Hyde, T. Sarna, and R. C. Sealy, Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals, J. Am. Chem. Soc., 100(12), 3922-3926 (1978).   DOI
27 P. A. Riley, Melanin, Int. J. Biochem. Cell Biol., 29(11), 1235-1239 (1997).   DOI
28 M. d'Ischia, K. Wakamatsu, A. Napolitano, S. Briganti, J.-C. Garcia-Borron, D. Kovacs, P. Meredith, A. Pezzella, M. Picardo, T. Sarna, J. D. Simon, and S. Ito, Melanins and melanogenesis: Methods, standards, protocols, Pigment Cell Melanoma Res., 26(5), 616-633 (2013).   DOI
29 C. J. Bettinger, P. P. Bruggeman, A. Misra, J. T. Borenstein, and R. Langer, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering, Biomaterials, 30(17), 3050-3057 (2009).   DOI
30 M. Rozanowska, T. Sarna, E. J. Land, and T. G. Truscott, Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals, Free Radic. Biol. Med., 26(5-6), 518-525 (1999).   DOI
31 M. d'Ischia, A. Napolitano, A. Pezzella, P. Meredith, and T. Sarna, Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials, Angew. Chem. Int. Ed., 48(22), 3914-3921 (2009).   DOI
32 Y. Liu and J. D. Simon, The effect of preparation procedures on the morphology of melanin from the ink sac of Sepia officinalis, Pigment Cell Res., 16(1), 72-80 (2003).   DOI
33 M. d'Ischia, A. Napolitano, V. Ball, C.-T. Chen, and M. J. Buehler, Polydopamine and eumelanin: From etructure-property relationships to a unified tailoring strategy, Acc. Chem. Res., 47(12), 3541-3550 (2014).   DOI
34 J. P. Bothma, J. de Boor, U. Divakar, P. E. Schwenn, and P. Meredith, Device-quality electrically conducting melanin thin films, Adv. Mater., 20(18), 3539-3542 (2008).   DOI
35 M. I. N. da Silva, S. N. Deziderio, J. C. Gonzalez, C. F. O. Graeff, and M. A. Cotta, Synthetic melanin thin films: Structural and electrical properties, J. Appl. Phys., 96(10), 5803-5807 (2004).   DOI
36 J. Borovansky, M. Elleder, Melanosome degradation: Fact or fiction, Pigment Cell Res., 16(3), 280-286 (2003).   DOI
37 J. Wuensche, F. Cicoira, C. F. O. Graeff, and C. Santato, Eumelanin thin films: Solution-processing, growth, and charge transport properties, J. Mater. Chem. B, 1(31), 3836-3842 (2013).   DOI
38 D. Kai, M. P. Prabhakaran, G. Jin, and S. Ramakrishna, Biocompatibility evaluation of electrically conductive nanofibrous scaffolds for cardiac tissue engineering, J. Mater. Chem. B, 1(17), 2305-2314 (2013).   DOI
39 V. Gargiulo, M. Alfe, R. Di Capua, A. R. Togna, V. Cammisotto, S. Fiorito, A. Musto, A. Navarra, S. Parisi, and A. Pezzella, Supplementing pi-systems: eumelanin and graphene-like integration towards highly conductive materials for the mammalian cell culture bio-interface, J. Mater. Chem. B, 3(25), 5070-5079 (2015).   DOI
40 D. J. Kim, K. Y. Ju, and J. K. Lee, The synthetic melanin nanoparticles having an excellent binding capacity of heavy metal ions, Bull. Korean Chem. Soc., 33(11), 3788-3792 (2012).   DOI
41 D. Wang, C. Chen, X. Ke, N. Kang, Y. Shen, Y. Liu, X. Zhou, H. Wang, C. Chen, and L. Ren, Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system, ACS Appl. Mater. Interfaces, 7(5), 3030-3040 (2015).   DOI
42 K. Shanmuganathan, J. H. Cho, P. Iyer, S. Baranowitz, and C. J. Ellison, Thermooxidative stabilization of polymers using natural and synthetic melanins, Macromolecules, 44(24), 9499-9507 (2011).   DOI
43 M. Araujo, R. Viveiros, T. R. Correia, I. J. Correia, V. D. B. Bonifacio, T. Casimiro, and A. Aguiar-Ricardo, Natural melanin: A potential pH-responsive drug release device, Int. J. Pharm., 469(1), 140-145 (2014).   DOI