• Title/Summary/Keyword: charge detector

Search Result 198, Processing Time 0.029 seconds

A Study on the Improvement of Characteristics of Precharge PFD (Precharge형 PFD의 동작 특성 개선에 관한 연구)

  • Woo, Young-Shin;Kim, Du-Gon;Oh, Reum;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3088-3090
    • /
    • 2000
  • In this paper, we introduce a charge pump PLL architecture which employs precharge phase frequency detector(PFD) and sequential PFD to achieve high frequency operation and fast acquisition. Operation frequency is increased by using precharge PFD when the phase difference is within -${\pi}\;{\sim}\;{\pi}$ and acquisition time is shortened by using sequential PFD and increased charge pump current when the phase difference is larger than |${\pi}$|. SO error detection range of proposed PLL structure is not limited to -${\pi}\;{\sim}\;{\pi}$. By virtue of this multi-phase frequency detector structure, the maximum operating frequency of 423MHz at 2.5V and faster acquisition were achieved by simulation.

  • PDF

A Fractional-N PLL with Phase Difference-to-Voltage Converter (위상차 전압 변환기를 이용한 Fractional-N 위상고정루프)

  • Lee, Sang-Ki;Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2716-2724
    • /
    • 2012
  • In this paper, a Phase Difference-to-Voltage Converter (PDVC) has been introduced into a conventional fractional-N PLL to suppress fractional spurs. The PDVC controls charge pump current depending on the phase difference of two input signals to phase frequency detector. The charge pump current decreases as the phase difference of two input signals increase. It results in the reduction of fractional spurs in the proposed fractional-N PLL. The proposed fractional-N PLL with PDVC has been designed based on a 1.8V $0.18{\mu}m$ CMOS process and proved by HSPICE simulation.

Temperature Stable Frequency-to-Voltage Converter (동작온도에 무관한 Frequency-to-Voltage 변환 회로)

  • Choi, Jin-Ho;Yu, Young-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.949-954
    • /
    • 2007
  • In this work, temperature stable frequency-to-voltage converter is proposed. In FVC circuit input frequency is converted into output voltage signal. A FLL is similar to PLL in the way that it generates an output signal which tracks an input reference signal. A PLL is built on a phase detector, a charge pump, and a low pass filter. However, FLL does not require the use of the phase detector, the charge pump and low pass filter. The FVC is designed by using $0.25{\mu}m$ CMOS process technology. From simulation results, the variation of output voltage is less than ${\pm}2%$ in the temperature range $0^{\circ}C\;to\;75^{\circ}C$ when the input frequency is from 70MHz to 140MHz.

A scintillation detector configuration for pulse shape analysis

  • Van Chuan, Phan;Hoa, Nguyen Duc;Hai, Nguyen Xuan;Anh, Nguyen Ngoc;Dien, Nguyen Nhi;Khang, Pham Dinh
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1426-1432
    • /
    • 2018
  • This paper presents a neutron detector configuration using EJ-301 scintillation liquid, a R9420 photo-multiplier and a homemade preamplifier. The detector qualities which include the energy linearity, efficiency response and neutron/gamma discrimination are guaranteed for neutron detection in the energy range from 0 to 3000 keVee. Regarding the neutron/gamma discrimination capability, four pulse shape discrimination (PSD) methods which are the threshold crossing time (TCT), pulse gradient analysis (PGA), charge comparison (CC) and correlation pattern recognition (CPR), were evaluated and discussed; among of these, the CPR method provides the best neutron/gamma discrimination.

Real Time Spectroelectrochemical Experiments with a Multichannel Detector

  • Sun-Il Mho;Sally N. Holer;Bum-Soo Kim;Su-Moon Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.739-743
    • /
    • 1994
  • A spectroelectrochemical system assembled with a white light source, bifurcated optical fiber, Oriel Multispec spectrograph, and a charge-coupled device (CCD) detector is described. The system is shown to be capable of acquiring a whole spectrum in the spectral range of 290-800 nm in 25 ms or a longer period during electrochemical experiments at reflective working electrodes such as platinum or mercury. The utility of the system in studying electrochemical reactions during the potential scan, galvanostatic electrolysis, or after the potential step is demonstrated.