• Title/Summary/Keyword: charge density

Search Result 1,126, Processing Time 0.032 seconds

Comparison of Korteweg-Helmholtz Electromagnetic Force Density and Magnetic Charge Force Density in Magnetic Systems (자기시스템의 Korteweg-Helmholtz 전자력 밀도와 자하 전자력 밀도의 비교)

  • Lee, Se-Hui;Choe, Myeong-Jun;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • In magnetic systems, distribution of electromagnetic force density causes mechanical deformation, which results in noise and vibration. In this paper, Korteweg-Helmholtzs energy method and equivalent magnetic charge method are employed for comparison of their resulting distributions of force density. The force density from the Korteweg-Helmholtzs method is expresses with two Maxwell stresses on the inside and the outside fo magnetic material respectively. The other is calculated using the magnetic Coulombs law. In the numerical model of an electromagnet, their numerical results are compared. The distributions by the two methods are almost the same. And their total forces are also shown to be the same to the one calculated from the conventional Maxwell stress tensor. But the magnetic charge method is easier and more efficient in numerical calculation.

  • PDF

Characteristic Analysis of Electret Filters made by Electrospinning (전기방사를 통한 정전필터제조 및 특성분석)

  • Ahn, Young-Chull;Kim, Gil-Tae;Kim, Seong-Kon;Lee, Jae-Keun;Kim, Jong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1134-1138
    • /
    • 2008
  • Electret filter media are used in general ventilation filters, disposable respirators, vehicle cabin filters, vacuum cleaners and room air cleaners. There are basic mechanisms of interception, inertial impaction, diffusion, gravitational settling, electrostatic attraction by which an aerosol particle can be deposited onto a fiber in a filter. The ability of fine particle removal strongly depends on the electrostatic forces between particles and polarized fibers. Thus, the stability of the fiber polarization is a major factor in the reliability of electret filters. In this study, electrical properties and filtration performance of electrospun filter media are quantitatively investigated. Electrical properties of electrospun filters have been studied on surface charge potential and surface charge density. Also the filtration performance of the electret filters are evaluated on collection efficiency. Electrospun filters show same collection efficiency with low pressure drop compare to commercialized HEPA filters. Surface charge potential and surface charge density of electrospun filters are increased with increasing applied voltage. Also collection efficiency of electrospun filters is increased with increasing surface charge potential and surface charge density.

  • PDF

Relationship between the Adsorption of Dye and the Surface Charge Density of Silica Sol (실리카졸의 표면 전하 밀도와 염료 흡착과의 상관성)

  • Cho, Gyeong Sook;Lee, Dong-Hyun;Lim, Hyung Mi;Kim, Dae Sung;Lee, Seung-Ho
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.297-304
    • /
    • 2014
  • In this study, we investigated the relationship between the adsorption property of Methyl violet or Tartrazine dye onto silica sol surface and surface charge density of the sol. The adsorption ratio of Methyl violet dye on silica sol decreased to 74% and 92% for the 68nm and 94nm silica sol, respectively, at dye concentration of $175{\mu}g/m^2$. However, the adsorption ratio of Tartrazine dye on 68nm and 94nm silica sol was about 0% for both of them. The surface charge density is $-0.40C/m^2$, $-0.26C/m^2$ for 68nm and 94nm silica sol, respectively. The amount of Methyl violet dye adsorbed on silica sol increased with an increase of surface charge density of particle at the same concentration of the dye. The adsorbed amount of the silica having high surface charge density is larger at high pH domain. But adsorbed amount of the silica having low surface charge density is larger at low pH domain.

Spatio-temporal Charge Distribution in Electric Double Layer Capacitors observed by pulsed Electro Acoustic Method

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.182-187
    • /
    • 2007
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about $205C/m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}=2.5V$, while the positively charged density became the maximum, about $61.1C/m^3$ at the region where it was located around the cathode layer. The performance of the best sample was found to be better in terms of the charge density (Cs) and specific energy ($E_s$) with a maximum value of ${\sim}8.4F/g$ and 26 Wh/kg. The $C_s$ obtained from the PEA method agreed well with that from the energy conversion method. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

STIMULATING NEURAL ELECTRODE-A STUDY ON CHARGE INJECTION PROPERTIES OF IRIDIUM OXIDE FILMS

  • Lee, In-Seop;Ray A. Buchanan;Jim M.Williams
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.156-162
    • /
    • 1995
  • For a stimulating neural electrode, the charge density should be as large as possible to provide adequate stimulation of the nervous system while allowing for miniaturization of the electrode. Since iridium oxide is able to produce high charge densities while preventing undesirable reactions due to charge storage, it has become a promising material for neural prostheses. Successful production of stable Ir and Ir oxide films on various substrates now limits the use of this material. Ir was deposited on two differently prepared surface of (mirror finish, passivation) surgical Ti-6AI-4V with several methods. Ion beam mixing of sputter deposited Ir films on passivated Ti-6AI-4V produced stable and good adherent Ir films. It was found that the increase in charge density of pure Ir on continuous cyclingis due to the accumulation of the oxide phase ( associated with a large surface area) in which the valence state of iridium changes and the double-layer capacitance increases. This study also showed that the double layer capacitance is equally or even more responsible for the high charge density of anodically formed Ir oxide.

  • PDF

Evaluation of Copper-Chromium-Arsenic Preservatives Fixation on Wood by Measuring the Density of Surface Electric Charge (표면전하밀도(表面電荷密度)를 이용(利用)한 동(銅)·크롬·비소계(砒素系) 방부방충제의 정착(定着)에 관(關)한 연구(硏究))

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 1990
  • This study was attempted to propose a method evaluating fixation of active ingredients in Copper-Chromium-Arsenic preservatives treatment. Fixated amount of active ingredients on wood was obtained by measuring the density of surface electric charge based on $\varsigma$ potential. Data accumulated from density of surface electric charge showed that the fixated amount of preservatives on wood increased linearly as concentration of treating solution increaced, which indicatied quantitative reactions in fixation of preservatives.

  • PDF

Calculation of Surface Charge Density on Current Carrying Conductors (전류가 흐르는 도체의 표면전하밀도 계산)

  • Lee, Bok-Yong;Lee, Joon-Ho;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.89-91
    • /
    • 1995
  • This paper deals with calculation of surface charge density on current carrying conductors by FEM. The proposed algorithm is formulated by equation of continutity in conductor region and maxwell's equations outside, respectively, Surface charge density is calculated by electric scalar potential and boundary condition for electrostatic fields.

  • PDF

Meaning and Definition of Partial Charges (부분 전하의 의미와 정의)

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • Partial charge is an important and fundamental concept which can explain many aspects of chemistry. Since a molecule can be regarded as neclei surrounded by electron cloud, there is no way to define a partial charge accurately. Nevertheless, there have been many attempts to define these seemingly impossible parameters, since they would facilitate the understanding of molecular properties such as molecular dipole moment, solvation, hydrogen bonding, molecular spectroscopy, chemical reaction, etc. Common methods are based on the charge equalization, orbital occupancy, charge density, and electric multipole moments, and electrostatic potential fitting. Methods based on the charge equalization using electronegativity are very fast, and therefore they have been used to study many compounds. Methods to subdivide orbital occupancy using basis set conversion, relies on the notion that molecular orbitals are composed of atomic orbitals. The main idea is to reduce overlap integral between two nuclei using converted orthogonal basis sets. Using some quantum mechanical observables like electrostatic potential or charge multipole moments. Using potential grids obtained from wavefunction, partial charges can be fitted. these charges are most useful to describe intermolecular electrostatic interactions. Methods to using dipole moment and its derivatives, seems to be sensitive the level of theory, Dividing electron density using density gradient being the most rigorous theoretically among various schemes, bears best potential to describe the charge the most adequately in the future.

A Study on a Capacitance Displacement Sensor for the Ultraprecision Measurement (초정밀 측정용 정전용량 변위센서에 관한 연구)

  • An, Hyung-Jun;Jung, Yoon;Jung, Sung-Chun;Jang, In-Bae;Han, Dong-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.291-295
    • /
    • 1996
  • This paper discusses several design factors of a capacitance displacement sensor with a numerical method and several experiments and describes guide lines of the design of this type sensor. We introduce the charge density method for the analysis of this type sensor, which has feasible accuracy and efficiency. The analysis of this type sensor with the charge density method agrees with displacement sensitivity experiments of a circular plate capacitance sensor with the sensor amp based In the charge transfer principle.

  • PDF

Effective Charge Number and Critical Current Density in Eutetic SnPb and Pb Free Flip Chip Solder Bumps (SnPb와 무연 플립칩 솔더의 유효전하수와 임계전류밀도)

  • Chae, Kwang Pyo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.49-54
    • /
    • 2005
  • The effective charge number and the critical current density of electromigration in eutetic SnPb and Pb Free $(SnAg_{3.8}Cu_{0.7)$ flip chip solder bumps are studied. The effective charge number of electromigration in eutectic SnPb solder is obtained as 34 and the critical current density is $j=0.169{\times}({\delta}_{\sigma}/{\delta}_x})\;A/cm^2,\;where\;({\delta}_{\sigma}/{\delta}_x})$ is the electromigration-induced compressive stress gradient along the length of the line. While the effect of electromigration in Pb free solder is much smaller than that in eutectic SnPb, the product of diffusivity and effective charge number $DZ^{\ast}$ has been assumed as $6.62{\times}10^{-11}$. The critical length for electromigration are also discussed.