DOI QR코드

DOI QR Code

Relationship between the Adsorption of Dye and the Surface Charge Density of Silica Sol

실리카졸의 표면 전하 밀도와 염료 흡착과의 상관성

  • Cho, Gyeong Sook (Energy Environment Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Dong-Hyun (Energy Environment Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Hyung Mi (Energy Environment Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Dae Sung (Energy Environment Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Seung-Ho (Energy Environment Materials Division, Korea Institute of Ceramic Engineering and Technology)
  • 조경숙 (한국세라믹기술원 에너지환경소재본부) ;
  • 이동현 (한국세라믹기술원 에너지환경소재본부) ;
  • 임형미 (한국세라믹기술원 에너지환경소재본부) ;
  • 김대성 (한국세라믹기술원 에너지환경소재본부) ;
  • 이승호 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2014.11.12
  • Accepted : 2014.12.23
  • Published : 2014.12.27

Abstract

In this study, we investigated the relationship between the adsorption property of Methyl violet or Tartrazine dye onto silica sol surface and surface charge density of the sol. The adsorption ratio of Methyl violet dye on silica sol decreased to 74% and 92% for the 68nm and 94nm silica sol, respectively, at dye concentration of $175{\mu}g/m^2$. However, the adsorption ratio of Tartrazine dye on 68nm and 94nm silica sol was about 0% for both of them. The surface charge density is $-0.40C/m^2$, $-0.26C/m^2$ for 68nm and 94nm silica sol, respectively. The amount of Methyl violet dye adsorbed on silica sol increased with an increase of surface charge density of particle at the same concentration of the dye. The adsorbed amount of the silica having high surface charge density is larger at high pH domain. But adsorbed amount of the silica having low surface charge density is larger at low pH domain.

Keywords

References

  1. Ministry of Environment, "Occurrence Treatment of Industrial Waste Water", Ministry of Environment, Sejong, p.235, 2014.
  2. E. Forgacs, T. Cserhati, and G. Oros, Removal of Synthetic Dyes from Waste Waters: A Review, Environment International, 30(7), 953(2004). https://doi.org/10.1016/j.envint.2004.02.001
  3. S. Azizian, M. Haerifar, and H. Bashiri, Adsorption of Methyl Violet onto Granular Activated Carbon: Equilibrium, Kinetics and Modeling, Chemical Engineering J., 146(1), 36(2009). https://doi.org/10.1016/j.cej.2008.05.024
  4. P. Monash and G. Pugazhenthi, Adsorption of Crystal Violet Dye from Aqueous Solution using Mesoporous Materials Synthesized at Room Temperature, Adsorption, 15(4), 390(2009). https://doi.org/10.1007/s10450-009-9156-y
  5. N. H. Ince and D. T. Gonenc, Treatability of a Textile Azo Dye by UV/$H_2O_2$, Environmental Technology, 18(2), 179(1997). https://doi.org/10.1080/09593330.1997.9618484
  6. S. Liakou, S. Pavlou, and G. Lyberatos, Ozonation of Azo Dyes, Water Science and Technology, 35(4), 279(1997).
  7. A. Stolz, Basic and Applied Aspects in the Microbial Degradation of Azo Dyes, Applied Microbiology and Biotechnology, 56(1-2), 69(2001). https://doi.org/10.1007/s002530100686
  8. A. Bhunia, S. Durani, and P. P. Wangikar, Horseradish Peroxidase Catalyzed Degradation of Industrially Important Dyes, Biotechnology and Bioengineering, 72(5), 562(2001). https://doi.org/10.1002/1097-0290(20010305)72:5<562::AID-BIT1020>3.0.CO;2-S
  9. M. Scurtu, E. Andronescu, C. Guran, M. Sonmez, A. Grumezescu, L. Pall, A. Fical, and D. Fical, Colloidal Silica Use As Dyes Removing System, Revista Dechimie, 63(10), 1013(2012).
  10. A. Krysztafkiewicz, S. Binkowski, and T. Jesionowski, Adsorption of Dyes on a Silica Surface, Applied Surface Science, 199(1), 31(2002). https://doi.org/10.1016/S0169-4332(02)00248-9
  11. E. D. Seo, Low Temperature Plasma Treatment of Linseed Oil for Immobilization of Silica as Flame-resistant Material, Textile Coloration and Finishing(J. of Korea Soc. Dyers and Finishers), 24(4), 313(2012). https://doi.org/10.5764/TCF.2012.24.4.313
  12. G. S. Cho, D. H. Lee, H. M. Lim, S. H. Lee, C. Y. Kim, and D. S. Kim, Characterization of Surface Charge and Zeta Potential of Colloidal Silica Prepared by Various Methods, The Korean J. of Chemical Engineering, 31(11), 2088(2014). https://doi.org/10.1007/s11814-014-0112-5
  13. M. Do an and M. Alkan, Adsorption Kinetics of Methyl Violet onto Perlite, Chemosphere, 50(4), 517(2003). https://doi.org/10.1016/S0045-6535(02)00629-X
  14. E. M. Kim, C. W. Park, and J. H. Choi, Study of Dyeing Properties by Swelling Agent on Meta-aramid Fiber with Cationic Dyes, Textile Coloration and Finishing(J. of Korea Soc. Dyers and Finishers), 24(1), 1(2012). https://doi.org/10.5764/TCF.2012.24.1.1
  15. S. K. Mlonjic, Determination of Surface Ionization and Complexation Constants at Colloidal Silica/Electrolyte Interface, Colloids and Surfaces, 23(4), 301(1987). https://doi.org/10.1016/0166-6622(87)80273-1
  16. H. S. Cho, E. Y. Kim, and G. Y. Jeong, Surface Chemical Properties of the Youngdong Illite Ore: The pH of Zero Proton Charge and Surface Site Density, J. of Mineralogical Society of Korea, 14(1), 12(2001).
  17. B. H. Hameed, Equilibrium and Kinetic Studies of Methyl Violet Sorption by Agricultural Waste, J. of Hazardous Materials, 154(1), 204(2008). https://doi.org/10.1016/j.jhazmat.2007.10.010
  18. P. M. Dove and C. M. Craven, Surface Charge Density on Silica in Alkali and Alkaline Earth Chloride Electrolyte Solutions, Geochimicaet Cosmochimica Acta, 69(21), 4963(2005). https://doi.org/10.1016/j.gca.2005.05.006
  19. M. Dogan and M. Alkan, Removal of Methyl Violet from Aqueous Solution by Perlite, J. of Colloid and Interface Science, 267(1), 32(2003). https://doi.org/10.1016/S0021-9797(03)00579-4
  20. A. Azarkohan, F. Shemirani, and M. Alvand, Fast Analysis of Water Samples for Trace Amount of Crystal Violet Dye Based on Solid Phase Extraction Using Nanoporous SBA-3 Prior to Determination by Fiber Optic-Linear Array Detection Spectrophotometry, J. of Chemistry, 2013(530843), 8(2013).
  21. S. Ong, X. Zhao, and K. B. Eisenthal, Polarization of Water Molecules at a Charged Interface: Second Harmonic Studies of the Silica/Water Interface, Chemical Physics Letters, 191(3), 327(1992). https://doi.org/10.1016/0009-2614(92)85309-X

Cited by

  1. Enhancement of Dyeing Fastness of Artificial Suede (3) vol.28, pp.4, 2016, https://doi.org/10.5764/TCF.2016.28.4.280
  2. Surface Modification of Nanofiltration Membrane with Silane Coupling Agents for Separation of Dye vol.28, pp.6, 2018, https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.6.414