Browse > Article

Effective Charge Number and Critical Current Density in Eutetic SnPb and Pb Free Flip Chip Solder Bumps  

Chae, Kwang Pyo (Department of Applied Physics, Konkuk University)
Publication Information
Journal of Welding and Joining / v.23, no.5, 2005 , pp. 49-54 More about this Journal
Abstract
The effective charge number and the critical current density of electromigration in eutetic SnPb and Pb Free $(SnAg_{3.8}Cu_{0.7)$ flip chip solder bumps are studied. The effective charge number of electromigration in eutectic SnPb solder is obtained as 34 and the critical current density is $j=0.169{\times}({\delta}_{\sigma}/{\delta}_x})\;A/cm^2,\;where\;({\delta}_{\sigma}/{\delta}_x})$ is the electromigration-induced compressive stress gradient along the length of the line. While the effect of electromigration in Pb free solder is much smaller than that in eutectic SnPb, the product of diffusivity and effective charge number $DZ^{\ast}$ has been assumed as $6.62{\times}10^{-11}$. The critical length for electromigration are also discussed.
Keywords
Electromigration; Effective charge number; Solder; Eutectic; Pb-free;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. S. Chang, A. Oscilowski and R. C. Bracken: IEEE Circuits Devices Mag. 14, 45 (1998)
2 D. Gupta, K. Vieregge and W. Gust: Acta mater. 47, 5 (1999)
3 K. Zeng and K. N. Tu: Mater. Sci. and Eng. R38, 55 (2002)
4 M. Abtew and G. Selvaduray: Mater. Sci. Eng. 27, 95 (2000)
5 I. A. Blech and C. Herring: Appl. Phys. Lett. 29, 131 (1976)   DOI
6 J. Grazer: Int. Mater. Rev. 40, 65 (1995)
7 F. M. d'Heurle and P. S. Ho, in Thin FIlms: Interdiffusion and Reactions, J. M. Poate, K. N. Tu and J. W. Mayer ed., Wiley, Chichester, UK, 1978, 243-303
8 J. W. Jang, P. G. Kim, K. N. Tu and M. Lee: J. Mater. Res. 14, 1 (1999)
9 H. M. Breitling and R. E. Hummel: J. Phys. Chem. Solids. 33, 845 (1972)
10 P. S. Ho and T. Kwok: Rep. Frog. Phys. 52, 301 (1989)
11 S. Brandenburg, and S. Yeh: in Proc. of the surface Mount Inter. Conf and Expo. San Jose, CA, USA, SMTA, Edina, MN, USA, 23-27 Aug. 1998, pp. 337-344
12 C. Y. Liu, C. Chen, C. N. Liao and K. N. Tu: Appl. Phys. Lett. 75, 58 (1999)
13 Everett C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius and H. Balkan: App. Phys. Lett. 80, 580 (2002)
14 K. N. Tu: Phys. Rev. 45, 1409 (1992)
15 H. B. Huntington: Diffusion in solid: Recent Developments, Academic, New York, 1961
16 D. R. Frear and P. T. Vianco: Metall Trans. 25, 1509 (1994)
17 T. Y. Lee, K. N. Tu, S. M. Kuo and D. R. Frear: J. Appl. Phys. 89, 3189 (2000)
18 K. N. Tu, J. W. Mayer and L. C. Feldman: Electronic Thin Film Science, Macmillan, New York, 2002, Chap 14
19 R. J. Klein Wassink: Soldering in Electronics, Electrochemical Society, New York, 1989, 166
20 T. Y. Lee, K. N. Tu, and D. R. Frear: J. Appl. Phys. 90, 4502 (2001)   DOI   ScienceOn
21 P. T. Vianco and D. R. Frear: J. Mater. 45, 14 (1993)   DOI   ScienceOn
22 F. M. d'Heurle and R. Rosenberg, Physics of Thin Films, Academic, New York, NY, 1973, Vol.7, 257
23 S. K. Kang and S. Purushothaman: J. Electron. Mater. 25, 1113 (1996)
24 I. A. Blech: J. Appl. Phys. 47, 1203 (1976)   DOI   ScienceOn
25 H. Gan and K. N. Tu: in Proc. of 52nd Electronic Components and Technology Conference 2002. (Cat.No.02CH37345). IEEE., Piscataway, NJ, USA, 2002, 1206-1212
26 M. J. Azaz: Appl. Phys. Lett. 70, 2810 (1997)
27 C. K. Hu, H. B. Huntington and G. R. Grunzalsky: Phys. Rev. B28, 579 (1983)
28 P. C. Wang, G. S. Cargill III, I. C. Noyan and C. K. Hu: Appl. Phys. Lett. 72, 1296 (1998)
29 C. K. Hu and H. B. Huntington: in Diffusion Phenorrena in Thin fllms and microelectronic Materials, D. Gupta and P.S. Ho, ed., Noyes, Park Ridge, NJ, 1998
30 C. K. Hu and J. M. E. Harper: Mater. Chem. Phys. 52, 5 (1998)
31 C. Y. Liu, C. Chen and K. N. Tu: J. Appl. Phys. 88, 5703 (2000)
32 Q. T. Huynh, C. Y. Liu, Chih and K. N. Tu: J. Appl. Phys. 89, 4332 (2002)   DOI   ScienceOn