• 제목/요약/키워드: charge carrier transport

검색결과 72건 처리시간 0.027초

Gd0.33Sr0.67FeO3 세라믹스의 전기전도 특성 (Electrical Transport Properties of Gd0.33Sr0.67FeO3 Ceramics)

  • 정우환
    • 한국세라믹학회지
    • /
    • 제43권2호
    • /
    • pp.131-135
    • /
    • 2006
  • In this study, the dielectric, magnetic and transport properties of $Gd_{0.33}Sr_{0.67}FeO_3$ have been analyzed. The dielectric loss anomaly was found to be around 170 K. The activation energy corresponding to relaxation process of this dielectric anomaly was 0.17 eV. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dielectric relaxation peak observed is correlated with polaron hopping between $Fe^{3+}\;and\;Fe^{4+}$ ions. The electrical resistivity displayed thermally activated temperature dependence above 200 K with an activation energy of 0.16 eV. In addition, the temperature dependence of thermoelectric power and resistivity suggests that the charge carrier responsible for conduction is strongly localized.

Hole trapping in carbon nanotube-polymer composite organic light emitting diodes

  • Woo, H.S.;Czerw, R.;Carroll, D.L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1047-1052
    • /
    • 2003
  • Controlling carrier transport in light emitting polymers is extremely important for their efficient use in organic opto-electronic devices [1]. Here we show that the interactions between single wall carbon nanotubes (SWNTs) and conjugated polymers can be used to modify the overall mobility of charge carriers within nanotube-polymer nanocomposites. By using a unique, double emitting-organic light emitting diodes (DE-OLEDs) structure. we have characterized the hole transport within electroluminescent nanocomposites (nanotubes in poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene) or PmPV). We have shown using this idea that single devices with color tunability can be fabricated. It is seen that SWNTs in PmPV are responsible for hole trapping, leading to shifts in the emission wavelengths. Our results could lead to improved organic optical amplifiers, semiconducting devices, and displays.

  • PDF

$La_{0.7}Sr_{0.3}FeO_{3}$ 세라믹스의 전기전도 특성 (Electrical Transport Properties of $La_{0.7}Sr_{0.3}FeO_{3}$)

  • 정우환
    • 한국전기전자재료학회논문지
    • /
    • 제14권5호
    • /
    • pp.376-382
    • /
    • 2001
  • Magnetic and transport properties in the ceramic specimen of L $a_{0.7}$S $r_{0.3}$Fe $O_3$ with orthohombic structure has been investigated. Weak ferromagnetism has been observed in a ceramic sample of L $a_{0.7}$S $r_{0.3}$Fe $O_3$. Large dielectric relaxation of Debye type is observed in paramagnetic states within the temperature range of 130K~200K. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dispersion is related to holes hopping between F $e^{3+}$ and F $e^{4+}$ ions. The temperature dependencies of thermoelectric power and Dc conductivity suggest that the charge carrier responsible for the conduction are strongly localized. These experimental results have been interpreted in terms of a hopping process involving small polaron.n.laron.n.

  • PDF

결함제어를 통한 열전 반도체 연구 동향 (Defect Engineering for High-Performance Thermoelectric Semiconductors)

  • 민유호
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.419-430
    • /
    • 2022
  • Defects in solids play a vital role on thermoelectric properties through the direct impacts of electronic band structure and electron/phonon transports, which can improve the electronic and thermal properties of a given thermoelectric semiconductor. Defects in semiconductors can be divided into four different types depending on their geometric dimensions, and thus understanding the effects on thermoelectric properties of each type is of a vital importance. This paper reviews the recent advances in the various thermoelectric semiconductors through defect engineering focusing on the charge carrier and phonon behaviors. First, we clarify and summarize each type of defects in thermoelectric semiconductors. Then, we review the recent achievements in thermoelectric properties by applying defect engineering when introducing defects into semiconductor lattices. This paper ends with a brief discussion on the challenges and future directions of defect engineering in the thermoelectric field.

Insertion of an Organic Hole Injection Layer for Inverted Organic Light-Emitting Devices

  • 박순미;김윤학;이연진;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.379-379
    • /
    • 2010
  • Recent technical advances in OLEDs (organic light emitting devices) requires more and more the improvement in low operation voltage, long lifetime, and high luminance efficiency. Inverted top emission OLEDs (ITOLED) appeared to overcome these problems. This evolved to operate better luminance efficiency from conventional OLEDs. First, it has large open area so to be brighter than conventional OLEDs. Also easy integration is possible with Si-based driving circuits for active matrix OLED. But, a proper buffer layer for carrier injection is needed in order to get a good performance. The buffer layer protects underlying organic materials against destructive particles during the electrode deposition and improves their charge transport efficiency by reducing the charge injection barrier. Hexaazatriphenylene-hexacarbonitrile (HAT-CN), a discoid organic molecule, has been used successfully in tandem OLEDs due to its high workfunction more than 6.1 eV. And it has the lowest unoccupied molecular orbital (LUMO) level near to Fermi level. So it plays like a strong electron acceptor. In this experiment, we measured energy level alignment and hole current density on inverted OLED structures for hole injection. The normal film structure of Al/NPB/ITO showed bad characteristics while the HAT-CN insertion between Al and NPB greatly improved hole current density. The behavior can be explained by charge generation at the HAT-CN/NPB interface and gap state formation at Al/HAT-CN interface, respectively. This result indicates that a proper organic buffer layer can be successfully utilized to enhance hole injection efficiency even with low work function Al anode.

  • PDF

Thermoelectric Properties of P-type (Ce1-zYbz)0.8Fe4-xCoxSb12 Skutterudites

  • Choi, Deok-Yeong;Cha, Ye-Eun;Kim, Il-Ho
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.822-828
    • /
    • 2018
  • P-type Ce/Yb-filled skutterudites were synthesized, and their charge transport and thermoelectric properties were investigated with partial double filling and charge compensation. In the case of $(Ce_{1-z}Yb_z)_{0.8}Fe_4Sb_{12}$ without Co substitution, the marcasite ($FeSb_2$) phase formed alongside the skutterudite phase, but the generation of the marcasite phase was inhibited by increasing Co concentration. The electrical conductivity decreased with increasing temperature, exhibiting degenerate semiconductor behavior. The Hall and Seebeck coefficients were positive, which confirmed that the specimens were p-type semiconductors with holes as the major carriers. The carrier concentration decreased as the concentration of Ce and Co increased, which led to decreased electrical conductivity and increased Seebeck coefficient. The thermal conductivity decreased due to a reduction in electronic thermal conductivity via Co substitution, and due to decreased lattice thermal conductivity via double filling of Ce and Yb. $(Ce_{0.25}Yb_{0.75})_{0.8}Fe_{3.5}Co_{0.5}Sb_{12}$ exhibited the greatest dimensionless figure of merit (ZT = 0.66 at 823 K).

현탁배양 세포내에서 특수 중성 아미노산의 수송 (Transport System of Specific Neutral Amino Acids in Suspension-Cultured Cells)

  • Bong-Heuy CHO
    • 식물조직배양학회지
    • /
    • 제21권4호
    • /
    • pp.201-206
    • /
    • 1994
  • Glycine, valine, alanine과 histidine의 수송은 모든 실험된 중성 아미노산에 의해 경쟁적인 방해를 당하였다.그리고 reciprocal 연구 결과로 이들 중성 아미노산들은 서로 carrier reciprocal의 활성부위를 점유하기위해 경쟁하므로 같은 운반자를 소유한다. Histidine은 전하를 띄우지 않은 상태로 중성 아미노산 운반자를 통해서 능동수송된다. 중성 운반자의 $K_m$ 값은 아미노산이 운반자에 대한 친화성에 따라서 3가지로 분류하였다. 0.1 mM 보다 작은 값, 0.1 mM에서 0.5 mM 사이에 있는 값고 0.5 mM 보다 큰 값이다. $V_{max}\;는\;3.12mol{\cdot}h^{-1}{\cdot}g{\;}fresh{\;}weight^{-1}\;과\;15.1\;{\mu}mole{\cdot}h^{-1}{\cdot}g{\;}fresh{\;}weight^{-1}$ 사이에 있다. 중성 아미노산은 아미노산 한개당 수소이온 한개가 동반수송되고, $K^{+}$ 한개가 전하보상을 위해서 배출된다. Histidine 분자도 1 분자당 1개의 수소이온과 동반수송되나 전하를 띄운 histidine 분자로부터 수소이온 한개가 배지로 떨어져 나오므로 동반수송된 수소이온의 움직임을 일시적으로 측정 할 수 없다.

  • PDF

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

Channel geometry-dependent characteristics in silicon nano-ribbon and nanowire FET for sensing applications

  • 최창용;황민영;김상식;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.33-33
    • /
    • 2009
  • Silicon nano-structures have great potential in bionic sensor applications. Atomic force microscopy (AFM) anodic oxidation have many advantages for the nanostructure fabrication, such as simple process in atmosphere at room temperature, compatibility with conventional Si process. In this work, we fabricated simple FET structures with channel width W~ 10nm (nanowire) and $1{\mu}m$ (nano-ribbon) on ~10, 20 and 100nm-thinned silicon-on-insulator (SOI) wafers in order to investigate the surface effect on the transport characteristics of nano-channel. For further quantitative analysis, we carried out the 2D numerical simulations to investigate the effect of channel surface states on the carrier distribution behavior inside the channel. The simulated 2D cross-sectional structures of fabricated devices had channel heights of H ~ 10, 20, and 100nm, widths of L ~ $1{\mu}m$ and 10nm respectively, where we simultaneously varied the channel surface charge density from $1{\times}10^{-9}$ to $1{\times}10^{-7}C/cm2$. It has been shown that the side-wall charge of nanowire channel mainly affect the I-V characteristics and this was confirmed by the 2D numerical simulations.

  • PDF

저온에서 La2/3+xTiO3-δ (x = 0, 0.13)세라믹스의 전자전도특성 (Low-Temperature Electron Transport Properties of La2/3+xTiO3-δ (x = 0, 0.13))

  • 정우환
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.604-609
    • /
    • 2014
  • The thermoelectric power and dc conductivity of $La_{2/3+x}TiO_{3-{\delta}}$ (x = 0, 0.13) were investigated. The thermoelectric power was negative between 80K and 300K. The measured thermoelectric power of x = 0.13 increased linearly with increased temperatures and was represented by $S_0+BT$. The x = 0 sample exhibited insulating behavior, while the x = 0.13 sample showed metallic behavior. The electric resistivity of x = 0.13 had a linear temperature dependence at high temperatures and a T3/2 dependence below about 100K. On the other hand, the electric resistivity of x = 0 has a linear relation between $ln{\rho}/T$ and 1/T in the range of 200 to 300K, and the activation energy for small polaron hopping was 0.23 eV. The temperature dependence of thermoelectric power and the resistivity of x = 0 suggests that the charge carriers responsible for conduction are strongly localized. This temperature dependence indicates that the charge carrier (x = 0) is an adiabatic small polaron. These experimental results are interpreted in terms of spin (x = 0.13) and small polaron (x = 0) hopping of almost localized Ti 3d electrons.