• Title/Summary/Keyword: charge/discharge capacity

Search Result 479, Processing Time 0.026 seconds

Effects of Porous Microstructure on the Electrochemical Properties of Si-Ge-Al Base Anode Materials for Li-ion Rechargeable Batteries (리튬이차전지용 다공성 Si-Ge-Al계 음극활물질의 전기화학적 특성)

  • Cho, Chung Rae;Kim, Myeong Geun;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.24-28
    • /
    • 2017
  • Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.

Expansion Ratio of Pulse Power Underreamed Anchor (펄스방전 그라운드 앵커의 확공 특성에 관한 연구)

  • Kim, Nak-Kyung;Ju, Yonh-Sun;Kim, Sung-Kyu;Seo, Hyo-Kyun;Kim, Sun-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1107-1112
    • /
    • 2009
  • Ground anchor should not be used in soft clay, because anchor resistance can not be guaranteed. However, there is a way to increase the capacity of anchors. The pulse powered anchor is an underreamed anchor by using high voltage electrokinetic pulse energy. In this study, a series of field test were carried out in order to find expansion rate related in number of pulse charge. and Anchor pull-out tests were performed at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea. Data were analyzed in order to define a relation between expansion rate and ultimate pullout load.

  • PDF

Single-phase SRM Drive for Torque Ripple Reduction and Power Factor Improvement (토크리플 억제와 역률개선을 위한 단상 SRM의 구동시스템)

  • Ahn Jin-Woo;Liang Jianing
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.389-395
    • /
    • 2006
  • In the single-phase switched reluctance motor (SRM) drive, the required DC source is generally supplied by the circuit consisting of bridge rectifier with diodes and many filter capacitances connected with AC source. Although the peak torque ripple of SRM is small because of large capacity of the capacitance, the charge and discharge time swhich the AC source acts on the capacitance are small and the peak current will pass on the side of source, so power factor and system efficiency decrease. Therefore a novel SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor and switching topology. The proposed drive circuit consists of one switching part and diodes which can separate the output of AC/DC rectifier from the large capacitance and supply power to SRM alternately in order to realize reduction of torque ripple and improvement of power factor through the turn on and turn off of switching part. In addition, the validity of method is tested by simulation and experiment.

Electrochemical Performance of Hybrid (Activated Carbon+LiCoO2) Electrode (하이브리드 (활성탄소+LiCoO2) 전극의 전기화학적 특성)

  • Kim, Ick-Jun;Jeon, Min-Je;Yang, Sun-Hye;Kim, Hyun-Soo;Moon, Sung-In;Oh, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.849-854
    • /
    • 2006
  • In this study, the hybrid electrodes, composed of the activated carbon powders and $LiCoO_{2}$ powders, were prepared as a cathode for the high-capacitance type hybrid capacitor, and the electrochemical properties of the hybrid electrodes were examined in terms of the weight composition and the milling time of $LiCoO_{2}$ powders. The specific volumetric capacities were increased with increasing of the composition of $LiCoO_{2}$ powders in the hybrid electrodes. On the other hand the coin cell capacitors, using the hybrid electrodes with $LiCoO_{2}$ poweders milled for 200 h, have exhibited the lower internal resistivities and the better capacity retention after 100 charge-discharge cycle than those of the coin cell capacitors using the hybrid electrodes with raw $LiCoO_{2}$ powders.

Performance Characteristics of a Drop-in System for a Mobile Air Conditioner Using Refrigerant R1234yf (냉매 R1234yf 적용 자동차용 에어컨 Drop-in 성능 특성)

  • Cho, Honghyun;Lee, Hoseong;Park, Chasik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.823-829
    • /
    • 2012
  • In this study, the performance of mobile air conditioner(MAC) systems to which the refrigerants R134a and R1234yf were used was evaluated to compare the characteristic of automotive refrigeration cycles with refrigerant. The experimental setup of a MAC consists of an belt driven compressor, a condenser, an evaporator and a block type thermal expansion valve. The drop-in test on MAC were carried out under variable compressor speed from 800 to 2500 rpm. Performance test by using R1234yf and R134a in the same system revealed low the charge amount and mass flow rates for using R1234yf, that is, up to 10% and 17%, respectively. The compressor discharge temperature of R1234yf is $8^{\circ}C$ lower than that of R134a. The cooling capacity with R1234yf system decreased by 4~7% compared with R134a system. In addition, The COP of R1234yf system is lower 3~4% than that of R134a system.

The Triple Current Source Inverter System for Induction Motor Drive Using a One Chip Microcomputer (One Chip Microcomputer를 이용한 유도전동기 구동용 3동 전류형 인버어터시스템)

  • Chung, Yon-Tack;Jang, Seong-Chil;Hwang, Lak-Hoon;Lee, Hoon-Goo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.162-172
    • /
    • 1991
  • In proportion to the capacity enlargement of the induction motor system controlled by current source inverter, the capacitance of the commutating capacitor is enlarged and then the spike value of output voltage is increased at the moment of charge and discharge. Moreover, the output currnet includes a number of harmonic components. Such voltage spike and harmonics generate the torque ripple and lead to bad effects on the performance of the induction motor. In this study, all the harmonics excluding 17th and 19th harmonics were mostly elimunated by adopting 18-phase Triple High Frequency Current Source Inverter(HFCSI), and the spike component of output voltage was reduced by adding the Voltage Clamping Circuit(VCC). As a result, the torque ripple and the commutation loss were reduced and the performance of the system was improved. Experiments for speed control were carried out in the tripple current source inverter system for induction motor drive. Overall system was controlled by ONE CHIP MICROCOMPUTER(INTEL 8751). Control circuits were simplified and good experimental results in the constant V/F control were obtained due to the flexibility of the microcomputer.

  • PDF

Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 초전도 플라이휠 에너지 저장 시스템 설계 및 제작)

  • Jung, S.Y.;Han, Y.H.;Park, B.J.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 35 kWh class SFES module was designed and constructed as part of a 100kWh/1MW class SFES composed of three 35 kWh class SFES modules. The 35 kWh class SFES is composed of a main frame, superconductor bearings, a composite flywheel, a motor/generator, electro-magnetic bearings, and a permanent magnet bearing. The high energy density composite flywheel is levitated by the permanent magnet bearing and superconductor bearings, while being spun by the motor/generator, and the electro-magnetic bearings are activated while passing through the critical speeds. Each of the main components was designed to provide maximum performance within a space-limited compact frame. The 35 kWh class SFES is designed to store 35 kWh, with a 350 kW charge/discharge capacity, in the 8,000 ~ 12,000 rpm operational speed range.

Analyzed Model of The Active Filter combined with SMES

  • Kim A-Rong;Kim Jae-Ho;Kim Hae-Jong;Kim Seok-Ho;Seong Ki-Chul;Park Min-Won;Yu In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.20-24
    • /
    • 2006
  • Recently, utility network is becoming more and more complicated and huge due to IT and OA devices. In addition to, demands of power conversion devices which have non-linear switching devices are getting more and more increased. Consequently, because of the non-linear power semiconductor devices, current harmonics are unavoidable. Sometimes those current harmonics flow back to utility network and become one of the main reasons which can make the voltage distortion. Also, it makes noise and heat loss. On the other hands, voltage sag from sudden increasing loads is also one of the terrible problems inside of utility network. In order to compensate the current harmonics and voltage sag problem, AF(active filter) systems could be a good solution method. SMES is a very good promising source due to it's high response time of charge and discharge. Therefore, the combined AF and SMES system can be a wonderful device to compensate both harmonics current and voltage sag. However, SMES needs a superconducting magnetic coil. Because of using this superconducting magnetic coil, quench problem caused by unexpected reasons have always been unavoidable. Therefore, to solve out mentioned above, this paper presents a decisive method using shunt and series active filter system combined with SMES. Especially, authors analyzed the change of original energy capacity of SMES regarding to the size of resistance caused by quench of superconducting magnetic coil.

Manufacture of Titania-silica Composite Anode Materials by Sol-gel Method (졸-겔법을 이용한 Titania-silica 혼합 음극활물질의 제조)

  • Bang, Jong-Min;Cho, Young-Im;Na, Byung-Ki
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • Titania-silica composite materials were obtained by sol-gel method from TiCl4 and TEOS precusors, and they were applied to anode materials of lithium ion battery. Uniformly distributed composite materials can be manufactured by sol-gel method. The composite materials were heat treated by microwave to obtain materials with new properties. The experimental variables were composition of the material, heat treatment temperature, and microwave exposure. The structure and surface properties of the materials were analyzed by XRD, SEM, and the electrochemical capacity was measured with charge/discharge cycler.

Self-Supporting 3D-Graphene/MnO2 Composite Supercapacitors with High Stability

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.175-185
    • /
    • 2023
  • A hybrid supercapacitor is a promising energy storage device in view of its excellent capacitive performance. Commercial three-dimensional foam nickel (Ni) can be used as an ideal framework due to an interconnected network structure. However, its application as an electrode material for supercapacitors is limited due to its low specific capacity. Herein, we report a successful growth of MnO2 on the surface of graphene by a one-step hydrothermal method; thus, forming a three-dimensional MnO2-graphene-Ni hybrid foam. Our results show that the mixed structure of MnO2 with nanoflowers and nanorods grown on the graphene/Ni foam as a hybrid electrode delivers the maximum specific capacitance of 193 F·g-1 at a current density 0.1 A·g-1. More importantly, the hybrid electrode retains 104% of its initial capacitance after 1,000 charge-discharge cycles at 1 A·g-1; thus, showing the potential application as a stable supercapacitor electrode.