Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.1.24

Effects of Porous Microstructure on the Electrochemical Properties of Si-Ge-Al Base Anode Materials for Li-ion Rechargeable Batteries  

Cho, Chung Rae (Department of Energy Fusion Technologies, Inje University)
Kim, Myeong Geun (Department of Nanoscience and Engineering, Inje University)
Sohn, Keun Yong (Department of Nanoscience and Engineering, Inje University)
Park, Won-Wook (Department of Nanoscience and Engineering, Inje University)
Publication Information
Journal of Powder Materials / v.24, no.1, 2017 , pp. 24-28 More about this Journal
Abstract
Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.
Keywords
Li-ion battery; Solidfication; Si-Ge alloy anode; Porous structures; Electrochemical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Wang, I. D. Raistrick and R. A. Huggins: J. Electrochem. Soc., 133 (1986) 457.   DOI
2 K. Peng, J. Jie, W. Zhang, S. T. Lee: Appl. Phys. Lett., 93 (2008) 033105.   DOI
3 Y. Kwon, M. K. Kim, Y. Kim, Y. Lee and J. P. Cho: Electrochem. Solide State Lett., 9 (2006) A34.   DOI
4 H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui: Nano Lett., 12 (2012) 904.   DOI
5 C. K. Chan, H. Peng, G. Liu, K. McIlwrathet, X. F. Zhang, R. A. Huggins and Y. Cui: Nat. Nanotechnol., 3 (2007) 31.
6 M. Ashuri, Q. HeandL. Shaw: Nanoscale, 8 (2016) 74.   DOI
7 S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria and C. Capiglia: J. Power Sources, 257 (2014) 421.   DOI
8 T. H. Hwang, Y. M. Lee, B. S. Kong, J. S. Seo and J. W. Choi: Nano Lett., 12 (2012) 802.   DOI
9 T. D. Hatchart and J. R. Dahn: J. Electrochem. Soc., 151 (2004) A838.   DOI
10 B. M. Bang, H. Kim, J. P. Lee, J. Cho and S. Park: Energy Environ. Sci., 4 (2011) 3395.   DOI
11 H. Li, X. Huang, L. Chen, Z. Wu and Y. Liang: Electrochem. Solid-State Lett., 2 (1999) 547.   DOI
12 T. Song, H. Cheng, H. Choi, J. H. Lee, H. Han, D. H. Lee, D. S. Yoo, M. S. Kwon, J. M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y. C. Chung, H. Kim, J. A. Rogers and U. Paik: ACS Nano., 6 (2011) 303.
13 H. Ma, F. Y. Cheng, J. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao and J. Liang: Adv. Mater., 19 (2007) 4067.   DOI
14 J. Y. Park, M. Z Jung and J. D Lee: Appl. Chem. Eng., 26 (2015) 80.   DOI