• Title/Summary/Keyword: charge/discharge capacity

Search Result 478, Processing Time 0.021 seconds

Sodium Sulfur Battery for Energy Storage System (대용량 에너지 저장시스템을 위한 나트륨 유황전지)

  • Kim, Dul-Sun;Kang, Sungwhan;Kim, Jun-Young;Ahn, Jou-Hyeon;Lee, Chang-Hui;Jung, Keeyoung;Park, Yoon-Cheol;Kim, Goun;Cho, Namung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.111-122
    • /
    • 2013
  • Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.

The Effects of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery Using Anthraquinone and TEMPO Redox Couple (안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.695-700
    • /
    • 2019
  • n this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was $0.93Ah{\cdot}L^{-1}$ which is 35% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $4^{th}$ cycle and the capacity loss rate was $0.018Ah{\cdot}L^{-1}/cycle$ during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

Influence of Sputtering Conditions on Structural and Electrochemical Properties of the Si Anode Film for Lithium Secondary Batteries (리튬 이차전지에서 Si 음극박막의 스퍼터링 증착조건에 따르는 구조적, 전기화학적 특성 연구)

  • Joo, Seung-Hyun;Lee, Seong-Rae;Cho, Won-Il;Cho, Byung-Won
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • This study investigated the dependence of the various sputtering conditions (Ar pressure: $2{\sim}10\;mTorr$, Power: $50{\sim}150\;W$) and thickness ($50{\sim}1200\;nm$) of Si thin film on the electrochemical properties, microstructural properties and the capacity fading of a Si thin film anode. A Si layer and a Ti buffer layer were deposited on Copper foil by RF-magnetron sputtering. At 10 mTorr, the 50 W sample showed the best capacity of 3323 mAh/g, while the 100 W sample showed the best capacity retention of 91.7%, also at 10 mTorr. The initial capacities and capacity retention in the samples apart from the 50W sample at 10 mTorr were enhanced as the Ar pressure and power increased. This was considered to be related to the change of the microstructure and the surface morphology by various sputtering conditions. In addition, thinner Si film anodes showed better cycling performance. This phenomenon is caused by the structural stress and peeling off of the Si layer by the high volume change of Si during the charge/discharge process.

Performance of R1234yf and R1234yf/R134a Mixture under Mobile Air-conditioner Operating Conditions (R1234yf와 R1234yf/R134a의 자동차 에어컨 작동 조건에서의 성능 평가)

  • Park, Ki-Jung;Lee, Yo-Han;Choe, Dae-Seong;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.837-844
    • /
    • 2010
  • In this study, performance of R1234yf and R1234yf/R134a mixture is measured on a heat pump bench tester in an attempt to substitute R134a used widely in mobile air conditioners (MACs). The bench tester is equipped with a open type compressor providing a nominal capacity of 3.5 kW. All tests are conducted under the summer cooling and winter heating conditions of 7/4 $5^{\circ}C$ and $-7/41^{\circ}C$ in the evaporator and condenser, respectively. For R1234yf/R134a mixture, measurements are made at 5%, 10%, and 15% of R134a by mass. Test results show that the coefficient of performance (COP) and capacity of R1234yf are up to 2.7% and 4.0% lower than those of R134a, respectively. For R1234yf/R134a mixture, the COP and capacity are up to 3.9% lower and 3.6% higher than those of R134a. For R1234yf and R1234yf/R134a mixture, the compressor discharge temperature is $4.1{\sim}6.7^{\circ}C$ lower than that of R134a while the amount of charge is reduced up to 11% as compared to R134a. 90%R1234yf/10%R134a is a better refrigerant than pure R1234yf in that it is less flammable and more compatible with existing R134a system. Based upon the results, it is concluded that R1234yf and R1234yf/R134a mixture are long term environmentally friendly solutions to mobile air-conditioners due to their excellent environmental properties with acceptable performance.

Performance of HFC152a, HFC134a and HC290 Mixtures as Alternative Refrigerants for HFC134a (HFC152a, HFC134a, 프로판을 포함한 자동차용 대체/보충 냉매의 성능)

  • Kang, Nam-Koo;Bae, Guen-Hwan;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.383-391
    • /
    • 2010
  • In this study, HFC152a, HFC134a/HFC152a and HC290/HFC134a/HFC152a mixtures are studied for the supplementary and alternative refrigerants for HFC134a used in automobile air-conditioners. Due to the high global warming potential of HFC134a, it has to be phased out in the long run. Thermodynamic performance of these refrigerants are measured in a bench tester of 3.5 kW capacity with an open type compressor under both summer and winter conditions. Test results show that the coefficient of performance (COP) and capacity of pure HFC152a and HFC134a/HFC152a mixture are 9.1~12% and 7% higher than those of HFC134a. As for the HC290/HFC134a/HFC152a, the COP is up to 9.5% higher than that of HFC134a with 1~2% of HC290 while that is up to 6.1% lower than that of HFC134a with 5% HC290. The capacity of the ternary mixture, however, is 8.6% higher than that of HFC134a at all compositions tested. The compressor discharge temperatures of all refrigerants tested are $6{\sim}10^{\circ}C$ higher than that of HFC134a. For all refrigerants, the amount of charge is reduced up to 32% due to the decrease in liquid density. Overall, these refrigerants provide good performance with reasonable energy savings with less environmental problem and thus can be used as long term alternatives for automobile air-conditioners.

A Study on Metal Hydride Electrode of Ni/MH Battery(I) (니켈/금속수소 축전지의 금속수소 전극에 관한 연구(I))

  • Kim, Jeong-Seon;Cho, Won-Il;Cho, Byung-Won;Yun, Kyung-Suk;Kim, Sang-Ju;Shin, Chee-Burm
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.81-89
    • /
    • 1994
  • A study on Mm type electrode which is relatively high in electrode capacity and low in material cost was performed to develope high performance nickel-metal hydride battery. The electrode characteristics were investigated by P-C-T, charge-discharge and microencapsulation treatment experiments. The plateau pressure and hydrogen absorption capacity obtained from the P-C-T experiment were 0.4 atm and 310 mAh/g, respectively. The electrode capacity and stability of microencapsulated electrode were improved than those of conductor mixed electrode and the microencapsulation was possible without pretreatment. The electrode capacity of microencapsulated Mm type alloy was 240~250 mAh/g(0.2 C).

  • PDF

Variation of AC Impedance of the $TiS_2$ Composite/SPE/Li Cell with Cycling ($TiS_2$ Composite/SPE/Li Cell의 충방전에 따른 AC 임피던스의 변화)

  • Kim, J.U.;Gu, H.B.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1034-1038
    • /
    • 1995
  • The purpose of this study is to research and develop $TiS_2$ composite cathode for lithium polymer battery(LPB). $TiS_2$ electrode represent a class of insertion positive electrode used in Li secondary batteries. In this study, we investigated preparation of $TiS_2$ composite cathode and AC impedance response of $TiS_2$ composite/SPE/Li cells as a function of state of charge(SOC) and cycling. The resistance of B type cell using $TiS_2PEO_8LiClO_4PC_5EC_5$ composite cathode was lower than that of A type cell using $TiS_2PEO$ composite cathode. The cell resistance of B type cell is high for the first few percent discharge, decreases for midium discharge and then increases again toward the end of discharge. We believe the magnitude of the cell resistance is dominated by passivation layer impedance and small cathode resistance. AC impedance results indicate that the cell internal resistance increase with cycling, and this is attributed to change of passivation layer impedance with cycling. The passivation layer resistance($R_f$) of B type cell decreases for the 2nd cycling and then increases again with cycling. Redox coulombic efficiency of B type cell was about 141% at 1st cycle and 100% at 12th cycle. Also, $TiS_2$ specific capacity was 115 mAh/g at 12 cycle.

  • PDF

Fabrication of Li2MnSiO4 Cathode Thin Films by RF Sputtering for Thin Film Li-ion Secondary Batteries and Their Electrochemical Properties (RF 스퍼터법을 이용한 Li2MnSiO4 리튬 이차전지 양극활물질 박막 제조 및 전기화학적 특성)

  • Chae, Suman;Shim, Joongpyo;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.447-453
    • /
    • 2017
  • In this study, $Li_2MnSiO_4$ cathode material and LiPON solid electrolyte were manufactured into thin films, and the possibility of their use in thin-film batteries was researched. When the RTP treatment was performed after $Li_2MnSiO_4$ cathode thin-film deposition on the SUS substrate by a sputtering method, a ${\beta}-Li_2MnSiO_4$ cathode thin film was successfully manufactured. The LiPON solid electrolyte was prepared by a reactive sputtering method using a $Li_3PO_4$ target and $N_2$ gas, and a homogeneous and flat thin film was deposited on a $Li_2MnSiO_4$ cathode thin film. In order to evaluate the electrochemical properties of the $Li_2MnSiO_4$ cathode thin films, coin cells using only a liquid electrolyte were prepared and the charge/discharge test was conducted. As a result, the amorphous thin film of RTP treated at $600^{\circ}C$ showed the highest initial discharge capacity of about $60{\mu}Ah/cm^2$. In cases of coin cells using liquid/solid double electrolyte, the discharge capacities of the $Li_2MnSiO_4$ cathode thin films were comparable to those without solid LiPON electrolyte. It was revealed that $Li_2MnSiO_4$ cathode thin films with LiPON solid electrolyte were applicable in thin film batteries.

Electrochemical Properties of 0.3Li2MnO3·0.7LiMn0.55Ni0.30Co0.15O2 Electrode Containing VGCF for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Minchan;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.32-36
    • /
    • 2014
  • The $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material was prepared via a co-precipitation method. The vapor grown carbon fiber (VGCF) was used as a conductive material and its effects on electrochemical properties of the $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material were investigated. From the XRD pattern, the typical complex layered structure was confirmed and a solid solution between $Li_2MnO_3$ and $LiMO_2$ (M = Ni, Co and Mn) was formed without any secondary phases. The VGCF was properly distributed between cathode materials and conductive sources by a FE-SEM. In voltage profiles, the electrode with VGCF showed higher discharge capacity than the pristine electrode. At a 5C rate, 146 mAh/g was obtained compared with 232 mAh/g at initial discharge in the electrode with VGCF. Furthermore, the impedance of the electrode with VGCF did not changed much around $9-10{\Omega}$ while the pristine electrode increased from 21.5${\Omega}$ to $46.3{\Omega}$ after the $30^{th}$ charge/discharge cycling.

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery (Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교)

  • Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.