• Title/Summary/Keyword: characterization of Banach spaces

Search Result 16, Processing Time 0.019 seconds

ALGEBRAIC SPECTRAL SUBSPACES OF OPERATORS WITH FINITE ASCENT

  • Han, Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.677-686
    • /
    • 2016
  • Algebraic spectral subspaces were introduced by Johnson and Sinclair via a transnite sequence of spaces. Laursen simplified the definition of algebraic spectral subspace. Algebraic spectral subspaces are useful in automatic continuity theory of intertwining linear operators on Banach spaces. In this paper, we characterize algebraic spectral subspaces of operators with finite ascent. From this characterization we show that if T is a generalized scalar operator, then T has finite ascent.

CHARACTERIZATION OF TEMPERED EXPONENTIAL DICHOTOMIES

  • Barreira, Luis;Rijo, Joao;Valls, Claudia
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.171-194
    • /
    • 2020
  • For a nonautonomous dynamics defined by a sequence of bounded linear operators on a Banach space, we give a characterization of the existence of an exponential dichotomy with respect to a sequence of norms in terms of the invertibility of a certain linear operator between general admissible spaces. This notion of an exponential dichotomy contains as very special cases the notions of uniform, nonuniform and tempered exponential dichotomies. As applications, we detail the consequences of our results for the class of tempered exponential dichotomies, which are ubiquitous in the context of ergodic theory, and we show that the notion of an exponential dichotomy under sufficiently small parameterized perturbations persists and that their stable and unstable spaces are as regular as the perturbation.

A NOTE ON RADON-NIKODYM THEOREM FOR OPERATOR VALUED MEASURES AND ITS APPLICATIONS

  • Ahmed, Nasiruddin
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.285-295
    • /
    • 2013
  • In this note we present sufficient conditions for the existence of Radon-Nikodym derivatives (RND) of operator valued measures with respect to scalar measures. The RND is characterized by the Bochner integral in the strong operator topology of a strongly measurable operator valued function with respect to a nonnegative finite measure. Using this result we also obtain a characterization of compact sets in the space of operator valued measures. An extension of this result is also given using the theory of Pettis integral. These results have interesting applications in the study of evolution equations on Banach spaces driven by operator valued measures as structural controls.

ON A LOCAL CHARACTERIZATION OF SOME NEWTON-LIKE METHODS OF R-ORDER AT LEAST THREE UNDER WEAK CONDITIONS IN BANACH SPACES

  • Argyros, Ioannis K.;George, Santhosh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.513-523
    • /
    • 2015
  • We present a local convergence analysis of some Newton-like methods of R-order at least three in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first and second $Fr{\acute{e}}chet$-derivative of the operator involved. These conditions are weaker that the corresponding ones given by Hernandez, Romero [10] and others [1], [4]-[9] requiring hypotheses up to the third $Fr{\acute{e}}chet$ derivative. Numerical examples are also provided in this study.

ALGEBRAIC SPECTRAL SUBSPACES OF GENERALIZED SCALAR OPERATORS

  • Han, Hyuk
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.617-627
    • /
    • 1994
  • Algebraic spectral subspaces and admissible operators were introduced by K. B. Laursen and M. M. Neumann in 1988 [L88], [N]. These concepts are useful in automatic continuity problems of intertwining linear operators on Banach spaces. In this paper we characterize the algebraic spectral subspaces of generalized scalar operators. From this characterization we show that generalized scalar operators are admissible. Also we show that doubly power bounded operators are generalized scalar. And using the spectral capacity we show that a generalized scalar operator is decomposable. Then we give an example of an operator which is not admissible but decomposable.

  • PDF

A CHARACTERIZATION OF THE GENERALIZED PROJECTION WITH THE GENERALIZED DUALITY MAPPING AND ITS APPLICATIONS

  • Han, Sang-Hyeon;Park, Sung-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.279-296
    • /
    • 2012
  • In this paper, we define a generalized duality mapping, which is a generalization of the normalized duality mapping and using this, we extend the notion of a generalized projection and study their properties. Also we construct an approximating fixed point sequence using the generalized projection with the generalized duality mapping and prove its strong convergence.