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ALGEBRAIC SPECTRAL SUBSPACES

OF OPERATORS WITH FINITE ASCENT

Hyuk Han*

Abstract. Algebraic spectral subspaces were introduced by John-
son and Sinclair via a transfinite sequence of spaces. Laursen simpli-
fied the definition of algebraic spectral subspace. Algebraic spectral
subspaces are useful in automatic continuity theory of intertwining
linear operators on Banach spaces. In this paper, we characterize
algebraic spectral subspaces of operators with finite ascent. From
this characterization we show that if T is a generalized scalar oper-
ator, then T has finite ascent.

1. Introduction

Let X be a vector space over the complex plane C, and let T : X → X
be a linear operator on X. The surjectivity spectrum σsu(T ) is defined
by

σsu(T ) = {λ ∈ C | (T − λ)X 6= X}.
In [3], the surjectivity spectrum is called the approximate defect spec-
trum. The surjectivity spectrum is clearly a purely algebraic notion.
Nevertheless, in this paper we shall concentrate on bounded linear op-
erators. In this setting it is easy to relate the surjectivity spectrum to
the spectrum σ(T ).

Let lat(T ) denote the collection of T -invariant subspaces of X. Let
Y ∈ lat(T ), T |Y denote the restriction of T on Y .

Definition 1.1. Let T be a linear operator on a vector space X. And
let F be a subset of the complex plane C. Then the algebraic spectral
subspace ET (F ) is defined by

ET (F ) = span{Y ∈ lat(T ) |σsu(T |Y ) ⊆ F}.
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It is clear that ET (F ) is the largest T -invariant subspace of X for
which the surjectivity spectrum of T is a subset of F . Equivalently,
ET (F ) is the largest T -invariant subspace of X on which all restrictions
T − λ, λ ∈ C \ F , are surjective. That is,

(T − λ)ET (F ) = ET (F ) for all λ ∈ C \ F
as well so that the set is the largest linear subspace with this property.
In the next remark, we collect a number of results on algebraic spectral
subspaces. These results are found in [6].

Remark 1.2. (1) By the definition of the algebraic spectral subspace,
it is clear that

ET (F1) ⊆ ET (F2) for F1 ⊆ F2 ⊆ C.
(2) Let A be a linear operator on a vector space X with AT = TA. For
a given subset F of C and λ /∈ F , AET (F ) ⊆ ET (F ). That is, ET (F ) is
a hyper-invariant subspace of T .

(3) It is easy to see that ET (F ) = ET (F ∩ σsu(T )).

(4) Note that ET (C \ {λ}) = ET−λ(C \ {0}). Indeed,

ET−λ(C \ {0}) = span{Y ∈ lat(T ) |σsu(T − λ|Y ) ⊆ C \ {0}}
= span{Y ∈ lat(T ) |σsu(T |Y )− λ ⊆ C \ {0}}
= span{Y ∈ lat(T ) |σsu(T |Y ) ⊆ C \ {λ}}
= ET (C \ {λ}).

(5) If {Fα} is a family of subsets of C, then

ET
(⋂
α

Fα
)

=
⋂
α

ET (Fα).

Lemma 1.3. Let T be a linear operator on a vector space X. And
let F be a subset of the complex plane C. Then the algebraic spectral
subspace ET (F ) is the union of all setsM ⊆ X such thatM ⊆ (T−λ)M ,
for all λ ∈ C \ F .

Proof. Denote by Z the union of all sets M with the given property.
Clearly Z is a linear subspace of X with the property that

Z ⊆ (T − λ)Z for all λ ∈ C \ F.
On the other hand, applying the operator T − λ to both sides of the
above inclusion we get

(T − λ)Z ⊆ (T − λ)((T − λ)Z) for all λ ∈ C \ F.
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Hence the set (T − λ)Z has the given property, and we have

(T − λ)Z ⊆ Z for all λ ∈ C \ F.
by the definition of Z. Thus we have shown that (T − λ)Z = Z for all
λ ∈ C \ F . Since ET (F ) is the largest linear subspace of X with this
property, we have

Z ⊆ ET (F ).

But the inclusion ET (F ) ⊆ Z is obvious. Therefore, ET (F ) = Z.

Remark 1.4. It is clear from the definition that

ET (F ) ⊆
⋂

λ/∈F,n∈N

(T − λ)nX.

Sometimes the above inclusion becomes in fact an equality. Indeed,
if T is a normal operator on a Hilbert space H, then it is known that
[12]

ET (F ) =
⋂
λ/∈F

(T − λ)X.

Another example is that: if F = C \ {0} and T is one-to-one, then by
the injectivity of T ,

∞⋂
n=1

TnX = T (
∞⋂
n=1

TnX).

By the maximality of ET (C \ {0}), we have

ET (C \ {0}) =

∞⋂
n=1

TnX.

Moreover, for a bounded linear operator T on a Banach space X
which has no eigenvalues, we will show that the inclusion of the Remark
1.4. becomes in fact an equality. For example, since shift operators and
Volterra operators have no eigenvalues, the algebraic spectral subspaces
of these operators can be represented by the right hand side of the above
remark.

Proposition 1.5. If T is a bounded linear operator on a Banach
space X which has no eigenvalues, then

ET (F ) =
⋂

λ/∈F,n∈N

(T − λ)nX

for any subset F of C.
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Proof. Suppose that λ /∈ F . Let x ∈
⋂
n∈N (T − λ)nX. For each

n ∈ N, there is a sequence {xn} ∈ X such that x = (T − λ)nxn. Then
T − λ is one to one, we have

x1 = (T − λ)x2 = (T − λ)2x3 = · · · .

Thus

x1 ∈
⋂
n∈N

(T − λ)nX.

But x = (T − λ)x1 and we get⋂
n∈N

(T − λ)nX ⊆ (T − λ)(
⋂
n∈N

(T − λ)nX).

By Lemma 1.3,⋂
n∈N

(T − λ)nX ⊆ ET (C \ {λ}) for all λ /∈ F.

Since ET (·) preserves an arbitrary intersection, we have⋂
λ/∈F,n∈N

(T − λ)nX ⊆
⋂
λ/∈F

ET (C \ {λ}) = ET (
⋂
λ/∈F

C \ {λ}) = ET (F ).

Hence we complete the proof.

Let L(X) denote the Banach algebra of all bounded linear operators
on a Banach space X over the complex plane C. And let σ(T ) and ρ(T )
denote the spectrum and the resolvent set of T , respectively. Given an
arbitrary operator T ∈ L(X), the local resolvent set ρT (x) of T at the
point x ∈ X is defined as the union of all open subsets U of C for which
there is an analytic function f : U → X which satisfies

(T − λ)f(λ) = x for all λ ∈ U.

The local spectrum σT (x) of T at x is then defined as

σT (x) = C \ ρT (x).

Clearly, the local resolvent set ρT (x) is open, and the local spectrum
σT (x) is closed. For each x ∈ X, the function f(λ) : ρ(T )→ X defined
by f(λ) = (T − λ)−1x is analytic on ρ(T ) and satisfies

(T − λ)f(λ) = x for all λ ∈ ρ(T ).

Hence the resolvent set ρ(T ) is always subset of ρT (x) and hence σT (x)
is always subset of σ(T ).
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Given an arbitrary operator T ∈ L(X) and for any set F ⊆ C, we
define the analytic spectral subspace of T by

XT (F ) = {x ∈ X |σT (x) ⊆ F}.
In the next remark, we collect a number of results on analytic spectral

subspaces. These results can be found in [1].

Remark 1.6. (1) By the definition of the analytic spectral subspace,
it is clear that

XT (F1) ⊆ XT (F2) for F1 ⊆ F2.

(2) It is well known that XT (F ) is a hyper-invariant subspace of T .

(3) It is easy to see that

XT (F ) = XT (F ∩ σ(T )).

(4) For all λ ∈ C \ F , (T − λ)XT (F ) = XT (F ). This implies that

XT (F ) ⊆ ET (F ) for all F ⊆ C.
(5) If {Fα} is a family of subsets of C, then

XT

(⋂
α

Fα
)

=
⋂
α

XT (Fα).

Lemma 1.7. Let T be a bounded linear operator on a Banach space
X and let λ ∈ C. Then

XT−λ(C \ {0}) = XT (C \ {λ}).

Proof. For each λ ∈ C. Let x ∈ XT−λ(C \ {0}). Then σT−λ(x) ⊆
C \ {0}. Hence 0 ∈ ρT−λ(x). Therefore, there is an open neighborhood
U of 0 and an analytic function f : U → X with

(T − λ− µ)f(µ) = x for all µ ∈ U.
Let V = U + λ. Then V is an open neighborhood of λ. And define
g : V → X by g(z) = f(z − λ) for all z ∈ V . Then for each z ∈ V there
is a unique µ ∈ U such that z = µ+ λ. Then

(T − z)g(z) = (T − µ− λ)g(µ+ λ)

= (T − λ− µ)f(µ)

= x

for all z ∈ V . Hence V ⊆ ρT (x). Therefore, we have

x ∈ XT (C \ {λ}).
Similarly the converse inclusion is also true.
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Proposition 1.8. Let T be a bounded linear operator on a Banach
space X. If F is a subset of C, then⋃

λ∈F,n∈N
ker(T − λ)n ⊆ XT (F ) ⊆ ET (F ) ⊆

⋂
λ/∈F,n∈N

(T − λ)nX.

Proof. It is only to show that⋃
λ∈F,n∈N

ker(T − λ)n ⊆ XT (F ).

For each λ ∈ F and n ∈ N, let x ∈ ker(T − λ)n. Then (T − λ)nx = 0.
Define the function f : C \ {λ} → X by

f(µ) = − 1

(µ− λ)n
((T − λ)n−1 + (µ− λ)(T − λ)n−2 + · · ·+ (µ− λ)n−1)x

for all µ ∈ C \ {λ}. Then clearly f is an analytic function on C \ {λ}.
And

(T − µ)f(µ) = ((T − λ)− (µ− λ))f(µ)

= x

for all µ ∈ C \ {λ}. Hence C \ {λ} ⊆ ρT (x). Thus we have

σT (x) ⊆ {λ} ⊆ F.
Hence x ∈ XT (F ). Therefore we have,

ker(T − λ)n ⊆ XT (F )

for all λ ∈ F , n ∈ N. This completes the proof.

2. Spectral subspaces of operators with finite ascent

We denote by C∞(C) the Fréchet algebra of all infinitely differentiable
complex valued functions ϕ(z), z = x1 + ix2, x1, x2 ∈ R, defined on the
complex plane C with the topology of uniform convergence of every
derivative on each compact subset of C. That is, with the topology
generated by a family of pseudo-norm

|ϕ|K,m = max
|p|≤m

sup
z∈K
|Dpϕ(z)|,

where K is an arbitrary compact subset of C, m a non-negative integer,
p = (p1, p2), p1, p2 ∈ N, |p| = p1 + p2 and

Dpϕ =
∂|p|ϕ

∂x1p1∂x2p2
, (z = x1 + ix2).
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An operator T ∈ L(X) is called a generalized scalar operator if there ex-
ists a continuous algebra homomorphism Φ : C∞(C)→ L(X) satisfying
Φ(1) = I, the identity operator on X, and Φ(z) = T where z denotes
the identity function on C. Such a continuous function Φ is in fact an
operator valued distribution and it is called a spectral distribution for T .
The class of generalized scalar operators was introduced by [1]. Every
linear operator on a finite dimensional space as well as every spectral
operator of finite type are generalized scalar operators.

Definition 2.1. An operator T on a Banach space X is said to have
finite ascent if for any λ ∈ C there is an n ∈ N such that

ker(T − λ)n = ker(T − λ)n+1.

Proposition 2.2. Let T be a bounded linear operator on a Banach
space X. If T has finite ascent, then

ET (F ) =
⋂

λ/∈F,n∈N

(T − λ)nX

for any subset F of C.

Proof. Since ET (·) preserves arbitrary intersection,

ET (F ) =
⋂
λ/∈F

ET (C \ {λ}) for all F ⊆ C.

By Remark 1.2, ET (C \ {λ}) = ET−λ(C \ {0}). Hence it is enough to
show that for each λ ∈ C,

ET−λ(C \ {0}) =
∞⋂
n=1

(T − λ)nX.

Let λ ∈ C be given. Then by the assumption, there is a p ∈ N such that
ker(T − λ)p = ker(T − λ)p+1. Let

Y =
∞⋂
n=1

(T − λ)nX.

Then we shall show that

ET−λ(C \ {0}) ⊆ Y ⊆ E(T−λ)p(C \ {0}) ⊆ ET−λ(C \ {0}).
The inclusion ET−λ(C \ {0}) ⊆ Y is obvious from the definition of
ET−λ(C \ {0}) and Y . Let

Z = E(T−λ)p(C \ {0}).
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Since Z is a hyper-invariant subspace of (T − λ)p,

Z ⊇ (T − λ)Z ⊇ (T − λ)2Z ⊇ · · · ⊇ (T − λ)pZ = Z.

Hence (T − λ)Z = Z. By the maximality of ET−λ(C \ {0}), we have

Z ⊆ ET−λ(C \ {0}).
To show that Y ⊆ E(T−λ)p(C \ {0}), Observe first that

Y =
∞⋂
n=1

((T − λ)p)nX

and second that
ker(T − λ)p = ker((T − λ)p)2.

Thus without loss of generality we may assume that p = 1, so that
ker(T − λ) = ker(T − λ)2.

Let x ∈ Y . Then there is a sequence {yn} in X such that

x = (T − λ)nyn for n = 1, 2, · · · ,
and

(T − λ)2((T − λ)n−2yn − (T − λ)n−1yn+1) = 0 for n = 2, 3, · · · .
Hence

(T − λ)n−2yn − (T − λ)n−1yn+1 ∈ ker(T − λ)2 = ker(T − λ).

Therefore, we have

(T − λ)((T − λ)n−2yn − (T − λ)n−1yn+1) = 0,

and
(T − λ)n−1yn = (T − λ)nyn+1 for n = 2, 3, · · · .

Let y = (T − λ)y2. Then clearly y ∈ Y , and

(T − λ)y = (T − λ)(T − λ)n−1yn

= (T − λ)nyn

= x.

So x ∈ (T − λ)Y and hence Y ⊆ (T − λ)Y . Since Y is invariant under
T − λ, (T − λ)Y ⊆ Y . Therefore, we have

(T − λ)Y = Y

By the maximality of ET−λ(C \ {0}), we have

Y ⊆ ET−λ(C \ {0}).
This completes the proof.
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Theorem 2.3. If T is a generalized scalar operator on a Banach
space X, then T has finite ascent.

Proof. For each λ ∈ C. By Proposition 1.8.,

ker(T − λ)n ⊆ XT ({λ}) ⊆ ET ({λ})
for all n ∈ N.

On the other hand, in [11] Vrbová proved that if T is a generalized
scalar operator, then there is a p ∈ N such that

XT (F ) =
⋂
µ/∈F

(T − µ)pX for all F ⊆ C.

Therefore, we have

(T − λ)pET ({λ}) ⊆ (T − λ)p
⋂
µ6=λ

(T − µ)pX

⊆
⋂
µ∈C

(T − µ)pX

= XT (∅)
= {0}.

Hence ET ({λ}) ⊆ ker(T − λ)p. Therefore, we have

ker(T − λ)p = ker(T − λ)p+1.

Hence T has finite ascent. This completes the proof.
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[13] P. Vrbová, Algebraic spectral subspaces, Czechoslovak Math. J. 38 (1988), no.
113, 342–350.

*
Department of Liberal Arts
Kongju National University
Yesan 32439, Republic of Korea
E-mail : hyukhan@kongju.ac.kr


