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A CHARACTERIZATION OF THE GENERALIZED

PROJECTION WITH THE GENERALIZED DUALITY

MAPPING AND ITS APPLICATIONS

Sang Hyeon Han and Sung Ho Park

Abstract. In this paper, we define a generalized duality mapping, which
is a generalization of the normalized duality mapping and using this, we
extend the notion of a generalized projection and study their properties.

Also we construct an approximating fixed point sequence using the gen-
eralized projection with the generalized duality mapping and prove its
strong convergence.

1. Introduction

Let B be a real Banach space with the norm ∥ · ∥ with the dual space B∗.
A Banach space B is said to be strictly convex if for any x, y ∈ U = {x ∈ B |
∥x∥ = 1},

x ̸= y implies

∥∥∥∥x+ y

2

∥∥∥∥ < 1.

It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0
such that for any x, y ∈ U ,

∥x− y∥ ≥ ε implies

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

It is well known that a uniformly convex Banach space is reflexive and strictly
convex. A Banach space B is said to be smooth if the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(1.1)

exists for all x, y ∈ U . If the limit (1.1) is attained uniformly for x, y ∈ U , we
say that a Banach space B is uniformly smooth. It is well known that the space
Lp(1 < p <∞) is a uniformly convex and uniformly smooth Banach space.
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Let C be a nonempty, closed and convex subset of B. The metric projection
PC : B → C has been wisely used in many areas of mathematics such as opti-
mization theory, fixed point theory, nonlinear programming, game theory and
variational inequalities (see [6], [7], [9], [11], [13], [14], [18]). In Hilbert spaces,
these problems have been sufficiently studied and there are many interesting
results (see [8], [16]). But it is difficult to transfer these results into Banach
spaces using the metric projection because the metric projection in Banach
spaces does not possess a number of properties which make them so effective in
Hilbert spaces. In 1994, Ya. I. Alber introduced other kinds of projections to
replaced with the metric projection, which are natural extension of the classical
metric projection in Hilbert spaces (see [1]). Here, we introduce one notion of
the definitions of projection defined by Ya. I. Alber.

Let ⟨·, ·⟩ denote the duality product. The normalized duality mapping J :
B → 2B

∗
is defined by

J(x) = {x∗ ∈ B∗ | ⟨x∗, x⟩ = ∥x∥2, ∥x∥ = ∥x∗∥}, x ∈ B.

Assume that B is smooth so that J is single-valued on B and hence we can
define a function ϕ : B ×B → R by

ϕ(x, y) = ∥x∥2 − 2 ⟨J(x), y⟩+ ∥y∥2, x, y ∈ B.

It is easily seen that

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2, x, y ∈ B.

The definition of a generalized projection with the normalized duality mapping
is as follows:

Definition ([1]). Let B be a smooth Banach space, C a nonempty, closed and
convex subset of B, x ∈ B and x0 ∈ C. If

ϕ(x, x0) = inf
y∈C

ϕ(x, y),

then x0 is called a generalized projection of x with the normalized duality
mapping J and is denoted by x0 ∈ P JC (x).

In this paper, we define a generalized duality mapping, which is a gener-
alization of the normalized duality mapping, and using this, we extend the
notion of the generalized projection in a smooth Banach space and study their
properties. Also we characterize the generalized projection with the generalized
duality mapping in terms of normalized and generalized duality mappings in a
smooth Banach space. This characterization is a generalization of characteri-
zation of the generalized projection with the normalized duality mapping in a
Banach space and the metric projection in a Hilbert space.

In [21], using the generalized projection with the normalized duality map-
ping, H. K. Xu constructed an approximating fixed point sequence in a smooth
and uniformly convex Banach space and proved the strong convergence of it.
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Theorem 1.1 ([21]). Let C be a smooth and uniformly convex Banach space,
C a nonempty, closed and convex subset of X and T : C → C a nonexpansive
mapping such that Fix(T ) = {x ∈ C | Tx = x} ≠ ∅. Let {xn} be the sequence
generated by

xn+1 = P JCn∩Qn(x0),

where

Cn = co{z ∈ C | ∥z − Tz∥ ≤ tn∥xn − Txn∥}, n ≥ 1,

Qn = {v ∈ C | ⟨J(xn)− Jψ(x0), v − xn⟩ ≥ 0)}, n ≥ 1.

Then {xn} is an approximating fixed point sequence for T and strongly conver-
gent to a fixed point of T .

Using the argument of the theorem above, we construct an approximating
fixed point sequence in a smooth and uniformly convex Banach space using
the generalized projection with the generalized duality mapping and prove its
strong convergence.

2. A generalized projection with the generalized duality mapping

Let ψ : [0,∞) → [0,∞) be a continuous, strictly increasing function such
that ψ(t) → ∞ as t → ∞, ψ(t) ≤ t for any t ∈ [0,∞) and ψ(0) = 0. This
function ψ is called a gauge function. The generalized duality mapping Jψ :

B → 2B
∗
associated with a gauge function ψ is defined by

Jψ(x) = {x∗ ∈ B∗ | ⟨x∗, x⟩ = ∥x∥ψ(∥x∥), ∥x∗∥ = ψ(∥x∥)}.
If ψ(t) = t, then Jψ = J . Notice that, in a Hilbert space, the generalized
duality mapping with a gauge function ψ is

Jψ(x) =

{
0 if x = 0,
ψ(∥x∥)
∥x∥ x if x ̸= 0.

First we collect many properties of the normalized duality mappings in dif-
ferent Banach space (see [19], [20]).

(1) For any x ∈ B, J(x) is nonempty, bounded, closed and convex.
(2) J is a homogeneous operator in arbitrary Banach space B, that is, for

any x ∈ B and a real number α,

J(αx) = αJ(x).

(3) J is a monotone operator in arbitrary Banach space B, that is, for any
x, y ∈ B, k ∈ J(x) and l ∈ J(y),

⟨k − l, x− y⟩ ≥ 0.

(4) If B is smooth, then J is a single-valued mapping.
(5) If B is reflexive, then J is a mapping of B onto B∗.
(6) If B is strictly convex, then J is one-to-one, that is,

x ̸= y ⇒ J(x) ∩ J(y) = ∅.
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(7) J is a continuous operator in smooth Banach spaces.
(8) J is the identity operator in Hilbert spaces.
(9) For any x, y ∈ B and j ∈ J(y),

∥x∥2 − ∥y∥2 ≥ 2 ⟨j, x− y⟩ .

The following properties of the generalized duality mapping (Remark 2.2 and
Propositions 2.3, 2.4, 2.5, 2.6) correspond to the above properties of the nor-
malized duality mapping.

Proposition 2.1.

Jψ(x) =

{
J(x) if x = 0,
ψ(∥x∥)
∥x∥ J(x) if x ̸= 0.

Proof. Assume that x = 0. Then Jψ(x) = {0} since ψ(0) = 0. Hence Jψ(x) =
{0} = J(x). Assume that x ̸= 0. If x∗ ∈ Jψ(x), then⟨

∥x∥
ψ(∥x∥)

x∗, x

⟩
=

∥x∥
ψ(∥x∥)

⟨x∗, x⟩ = ∥x∥
ψ(∥x∥)

∥x∗∥∥x∥ = ∥x∥2,

since ∥x∗∥ = ψ(∥x∥). Hence ∥x∥
ψ(∥x∥)x

∗ ∈ J(x) and so x∗ ∈ ψ(∥x∥)
∥x∥ J(x). Simi-

larly, we can show that
ψ(∥x∥)
∥x∥

J(x) ⊂ Jψ(x).

Therefore

Jψ(x) =

{
J(x) if x = 0,
ψ(∥x∥)
∥x∥ J(x) if x ̸= 0. □

Remark 2.2. From Proposition 2.1, we can see the following:

(a) For any x ∈ B, Jψ(x) is nonempty, bounded, closed and convex.
(b) If B is smooth, then Jψ is a single-valued mapping.
(c) If B is smooth, then Jψ is a continuous operator.

Proposition 2.3. If B is reflexive, then Jψ is a mapping of B onto B∗.

Proof. Let x∗ ∈ B∗ \ {0} be arbitrary. Then ∥x∗∥ > 0. Since ψ is strictly
increasing, there exists a unique tx∗ > 0 such that ψ(tx∗) = ∥x∗∥. Since
tx∗
∥x∗∥x

∗ ∈ B∗ and J is a mapping of B onto B∗, there exists x ∈ B such that
tx∗
∥x∗∥x

∗ ∈ J(x). Then ∥x∥ = tx∗ and

∥x∥2 =

⟨
tx∗

∥x∗∥
x∗, x

⟩
=

tx∗

∥x∗∥
⟨x∗, x⟩ .

So

⟨x∗, x⟩ = ∥x∗∥∥x∥ = ∥x∥ψ(∥x∥).
Hence x∗ ∈ Jψ(x). Note that Jψ(0) = {0}. So if x∗ = 0 ∈ B∗, then x∗ ∈ Jψ(0).
Thus Jψ is onto. □
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Proposition 2.4. Let ψ be a gauge function with ψ(αt) = αψ(t) for α ≥ 0.
For any x ∈ B and α ≥ 0,

Jψ(αx) = αJψ(x).

Proof. If α = 0, it holds clearly. Assume that α > 0. From Proposition 2.1
and Property 2 of the normalized duality mapping J , we have

Jψ(αx) =
ψ(∥αx∥)
∥αx∥

J(αx) =
|α|ψ(∥x∥)
|α|∥x∥

J(αx) = α
ψ(∥x∥)
∥x∥

J(x) = αJψ(x). □

Proposition 2.5. Jψ is a monotone operator in arbitrary Banach space B,
that is, for any x, y ∈ B, k ∈ Jψ(x) and l ∈ Jψ(y),

⟨k − l, x− y⟩ ≥ 0.

Proof. For any x, y ∈ B, k ∈ Jψ(x) and l ∈ Jψ(y), we have

⟨k − l, x− y⟩ = ⟨k, x⟩ − ⟨k, y⟩ − ⟨l, x⟩+ ⟨l, y⟩
≥ ∥x∥ψ(∥x∥)− ∥y∥ψ(∥x∥)− ∥x∥ψ(∥y∥) + ∥y∥ψ(∥y∥)
= (∥x∥ − ∥y∥)(ψ(∥x∥)− ψ(∥y∥) ≥ 0. □

Let B be a smooth Banach space. Then Jψ is a single-valued mapping in
B. We define the functions ϕψ : B ×B → R by

ϕψ(x, y) = ∥x∥ψ(∥x∥)− 2 ⟨Jψ(x), y⟩+ ∥y∥2

for any x, y ∈ B. It is obvious from the definition of the function ϕψ that

(ψ(∥x∥)− ∥y∥)2 ≤ ϕψ(x, y) ≤ (∥x∥+ ∥y∥)2(2.1)

for any x, y ∈ B since ψ(∥x∥) ≤ ∥x∥.

Proposition 2.6. Suppose that B is a smooth Banach space. Then for any
x, y ∈ B,

∥x∥2 − ∥y∥ψ(∥y∥) ≥ 2 ⟨Jψ(y), x− y⟩ .

Proof. Since ϕψ(y, x) ≥ 0 for any x, y ∈ B, we have

∥y∥ψ(∥y∥)− 2 ⟨Jψ(y), x⟩+ ∥x∥2 ≥ 0.

Hence

∥x∥2 ≥ 2 ⟨Jψ(y), x⟩ − ∥y∥ψ(∥y∥)
= 2 ⟨Jψ(y), x⟩ − ⟨Jψ(y), y⟩
= 2 ⟨Jψ(y), x⟩ − 2 ⟨Jψ(y), y⟩+ ⟨Jψ(y), y⟩
= 2 ⟨Jψ(y), x− y⟩+ ∥y∥ψ(∥y∥).

Thus we have

∥x∥2 − ∥y∥ψ(∥y∥) ≥ 2 ⟨Jψ(y), x− y⟩ . □
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Definition. Let B be a smooth Banach space, C a nonempty, closed and
convex subset of B, x ∈ B and x0 ∈ C. If

ϕψ(x, x0) = inf
y∈C

ϕψ(x, y),

then x0 is called a generalized projection of x with the generalized duality

mapping Jψ and is denoted by x0 ∈ P
Jψ
C (x).

If ψ(t) = t, then Jψ = J and so P
Jψ
C is equal to P JC . Especially, in a Hilbert

space, P
Jψ
C is equal to the metric projection PC .

Utilizing the idea in [15], we will prove the following propositions.

Proposition 2.7. If B is a reflexive and smooth Banach space and C is a

nonempty, closed and convex subset of B, then for any x ∈ B, P
Jψ
C (x) ̸= ∅.

Proof. We first prove it when C is bounded. For any x, y ∈ B, we have

(ψ(∥x∥)− ∥y∥)2 ≤ ϕψ(x, y) ≤ (∥x∥+ ∥y∥)2.

It implies that for any fixed x ∈ B, infy∈C ϕψ(x, y) is finite. Choose {yn} ⊂ C
such that

ϕψ(x, yn) → inf
y∈C

ϕψ(x, y) as n→ ∞.

Since B is reflexive and C is a nonempty, bounded, closed and convex subset
of B, it is weakly compact. Then there exists a subsequence of {yn}, without
loss of generality we assume that the subsequence of {yn} is itself and a point
x0 ∈ C such that yn → x0 weakly as n → ∞. From the properties of weak
convergence, we have

∥x0∥ ≤ lim inf
n→∞

∥yn∥.

Now we have

ϕψ(x, x0) = ∥x∥ψ(∥x∥)− 2 ⟨Jψ(x), x0⟩+ ∥x0∥2

= lim
n→∞

(
∥x∥ψ(∥x∥)− 2 ⟨Jψ(x), yn⟩+ ∥x0∥2

)
≤ lim inf

n→∞

(
∥x∥ψ(∥x∥)− 2 ⟨Jψ(x), yn⟩+ ∥yn∥2

)
= lim inf

n→∞
ϕψ(x, yn)

= lim
n→∞

ϕψ(x, yn)

= inf
y∈C

ϕψ(x, y).

Hence we have x0 ∈ P
Jψ
C (x) and so P

Jψ
C (x) ̸= ∅.

Next we prove it when C is unbounded. For any r > 0, we denote Br =
{x ∈ B | ∥x∥ ≤ r}. In this case, we can find R > 0 such that ∥x∥ ≤ R,
∥Jψ(x)∥ = ψ(∥x∥) ≤ R and C ∩BR ̸= ∅. If y ∈ C ∩BR, we have

ϕψ(x, y) ≤ (∥x∥+ ∥y∥)2 ≤ (2R)2 = 4R2



A CHARACTERIZATION OF THE GENERALIZED PROJECTION 285

and so

inf
y∈C∩BR

ϕψ(x, y) ≤ 4R2.

If y ∈ C and ∥y∥ > 4R, we have

ϕψ(x, y) ≥ (ψ(∥x∥)− ∥y∥)2 > (3R)2 = 9R2

and so

inf
y∈C,∥y∥>4R

ϕψ(x, y) ≥ 9R2.

Therefore, we have

inf
y∈C∩BR

ϕψ(x, y) < inf
y∈C,∥y∥>4R

ϕψ(x, y).

Now we obtain

inf
y∈C

ϕψ(x, y) = min

{
inf

y∈C∩B4R

ϕψ(x, y), inf
y∈C,∥y∥>4R

ϕψ(x, y)

}
≥ min

{
inf

y∈C∩B4R

ϕψ(x, y), inf
y∈C∩BR

ϕψ(x, y)

}
= inf
y∈C∩B4R

ϕψ(x, y)

≥ inf
y∈C

ϕψ(x, y).

So, we have

inf
y∈C

ϕψ(x, y) = inf
y∈C∩B4R

ϕψ(x, y).

It is clear that C ∩ B4R is a nonempty, bounded, closed and convex subset of
B. According to the first case, there exists x0 ∈ C ∩B4R such that

ϕψ(x, x0) = inf
y∈C∩B4R

ϕψ(x, y) = inf
y∈C

ϕψ(x, y).

It implies that x0 ∈ P
Jψ
C (x) and so P

Jψ
C (x) ̸= ∅. □

Corollary 2.8 ([15]). If B is a reflexive and smooth Banach space and C is a
nonempty, closed and convex subset of B, then for any x ∈ B, P JC (x) ̸= ∅.

Proposition 2.9. If B is a reflexive and smooth Banach space and C is a

nonempty, closed and convex subset of B, then for any x ∈ B, P
Jψ
C (x) is a

nonempty, closed, convex and bounded subset of C.

Proof. By Proposition 2.7, for any x ∈ B, P
Jψ
C (x) is nonempty. If x0 ∈ P

Jψ
C (x),

then |ψ(∥x∥)− ∥x0∥| ≤ ϕψ(x, x0)
1
2 so

∥x0∥ ≤ ϕψ(x, x0)
1
2 + ψ(∥x∥).

Thus P
Jψ
C (x) is bounded.
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Next we prove that P
Jψ
C (x) is closed. Suppose that {yn} ⊂ P

Jψ
C (x) and

yn → x0 as n→ ∞. Then

ϕψ(x, x0) = ∥x∥ψ(∥x∥)− 2 ⟨Jψ(x), x0⟩+ ∥x0∥2

= lim
n→∞

(
∥x∥ψ(∥x∥)− 2 ⟨Jψ(x), yn⟩+ ∥yn∥2

)
= lim
n→∞

ϕψ(x, yn) = inf
y∈C

ϕψ(x, y).

Thus x0 ∈ P
Jψ
C (x) and so P

Jψ
C (x) is closed.

Finally, we prove that P
Jψ
C (x) is convex. Suppose that y1, y2 ∈ P

Jψ
C (x) and

0 ≤ λ ≤ 1. Then λy1 + (1− λ)y2 ∈ C and

ϕψ(x, λy1 + (1− λ)y2)

=∥x∥ψ(∥x∥)− 2 ⟨Jψ(x), λy1 + (1− λ)y2⟩+ ∥λy1 + (1− λ)y2∥2

≤∥x∥ψ(∥x∥)− 2λ ⟨Jψ(x), y1⟩ − 2(1− λ) ⟨Jψ(x), y2⟩+ λ∥y1∥2 + (1− λ)∥y2∥2

=λϕψ(x, y1) + (1− λ)ϕψ(x, y2)

=λ inf
y∈C

ϕψ(x, y) + (1− λ) inf
y∈C

ϕψ(x, y)

= inf
y∈C

ϕψ(x, y).

Thus λy1 + (1− λ)y2 ∈ P
Jψ
C (x) and so P

Jψ
C (x) is convex. □

Corollary 2.10 ([15]). If B is a reflexive and smooth Banach space and C is
a nonempty, closed and convex subset of B, then for any x ∈ B, P JC (x) is a
nonempty, closed, convex and bounded subset of C.

Proposition 2.11. If B is a reflexive and smooth Banach space and C is a
nonempty, closed and convex subset of B, then for any x ∈ B, no two nonzero

elements in P
Jψ
C (x) are linearly dependent.

Proof. Suppose that there are y1, y2 ∈ P
Jψ
C (x) with y1 = µy2 for some real

number µ ̸= 1. Then ϕψ(x, y1) = ϕψ(x, y2), that is,

2 ⟨Jψ(x), y2 − y1⟩ = ∥y2∥2 − ∥y1∥2.

Replacing y1 by µy2 in the above equality, we have

2(1− µ) ⟨Jψ(x), y2⟩ = (1− µ2)∥y2∥2.

Since µ ̸= 1,

2 ⟨Jψ(x), y2⟩ = (1 + µ)∥y2∥2.

Let y3 = y2+y1
2 = 1+µ

2 y2. From the convexity property of P
Jψ
C (x), we have

y3 ∈ P
Jψ
C (x). Since ϕψ(x, y2) = ϕψ(x, y3),

2 ⟨Jψ(x), y2⟩ =
(
1 +

1 + µ

2

)
∥y2∥2.
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So 1+µ = 1+ 1+µ
2 , i.e., µ = 1. That is a contradiction to the hypothesis µ ̸= 1.

Therefore no two nonzero elements in P
Jψ
C (x) are linearly dependent. □

Corollary 2.12 ([15]). If B is a reflexive and smooth Banach space and C is a
nonempty, closed and convex subset of B, then for any x ∈ B, no two nonzero
elements in P JC (x) are linearly dependent.

Proposition 2.13. Let B be a reflexive and smooth Banach space and C be
a nonempty, closed and convex subset of B. If B is strictly convex, then the

operator P
Jψ
C : B → C is single valued.

Proof. Suppose that there exists x ∈ B such that P
Jψ
C (x) is not a singleton,

i.e., y1, y2 ∈ P
Jψ
C (x), y1 ̸= y2. Then ϕψ(x, y1) = ϕψ(x, y2). So

2 ⟨Jψ(x), y2 − y1⟩ = ∥y2∥2 − ∥y1∥2.(2.2)

Since P
Jψ
C (x) is convex, for any 0 ≤ λ ≤ 1, we have

λy2 + (1− λ)y1 ∈ P
Jψ
C (x).

Since ϕψ(x, λy2 + (1− λ)y1) = ϕψ(x, y1), we have

2λ ⟨Jψ(x), y2 − y1⟩ = ∥λy2 + (1− λ)y1∥2 − ∥y1∥2.(2.3)

By (2.2) and (2.3), we have

λ(∥y2∥2 − ∥y1∥2) = ∥λy2 + (1− λ)y1∥2 − ∥y1∥2,
so

∥λy2 + (1− λ)y1∥2 = λ∥y2∥2 + (1− λ)∥y1∥2.
Then

∥λy2 + (1− λ)y1∥2 ≤ (λ∥y2∥+ (1− λ)∥y1∥)2

≤ λ∥y2∥2 + (1− λ)∥y1∥2

= ∥λy2 + (1− λ)y1∥2.
So

∥λy2 + (1− λ)y1∥ = λ∥y2∥+ (1− λ)∥y1∥.
Taking λ = 1

2 , we get

∥y2 + y1∥ = ∥y2∥+ ∥y1∥.

Assume y1, y2 ̸= 0 and let α = ∥y2∥
∥y2∥+∥y1∥ . Then 0 < α < 1, 0 < 1− α < 1 and∥∥∥∥α x

|x∥
+ (1− α)

y

∥y∥

∥∥∥∥ = 1.

Since B is strictly convex, we have x
∥x∥ = y

∥y∥ , i.e., x = ∥x∥
∥y∥y. This is a

contradiction from Proposition 2.11. Hence the above equality shows that B is
not strictly convex. □
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Corollary 2.14 ([15]). Let B be a reflexive and smooth Banach space and C
be a nonempty, closed and convex subset of B. If B is strictly convex, then the
operator P JC : B → C is single valued.

Now we want to prove that the generalized projection P
Jψ
C is continuous if

B is a reflexive, strictly convex and smooth Banach space.

Proposition 2.15. If B is a reflexive, strictly convex and smooth Banach
space and C is a nonempty, closed and convex subset of B, then the generalized

projection operator P
Jψ
C : B → C is continuous.

Proof. Since B is a reflexive, strictly convex and smooth Banach space, from

Proposition 2.13, for any x ∈ B, P
Jψ
C (x) is single-valued. Suppose that xn → x

as n→ ∞. Let yn = P
Jψ
C (xn) and x0 = P

Jψ
C (x) for n = 1, 2, 3, . . .. Since

(ψ(∥xn∥)− ∥yn∥)2 ≤ ϕψ(xn, yn) ≤ ϕψ(xn, x0) ≤ (∥xn∥+ ∥x0∥)2

and xn → x as n→ ∞, we know that {yn} is a bounded sequence of B. Since
B is reflexive, there exists a subsequence of {yn}, without loss of the generality,
we may assume it is itself, such that yn → x′0 weakly as n→ ∞.

ϕψ(x, x
′
0) = ∥x∥ψ(∥x∥)− 2 ⟨Jψ(x), x′0⟩+ ∥x0∥2

≤ lim inf
n→∞

(
∥xn∥ψ(∥xn∥)− 2 ⟨Jψ(xn), yn⟩+ ∥yn∥2

)
= lim inf

n→∞
ϕψ(xn, yn)

= lim inf
n→∞

ϕψ(xn, y) for all y ∈ C

= ϕψ(x, y) for all y ∈ C.

Hence x′0 ∈ P
Jψ
C (x). Since P

Jψ
C (x) is a singleton set, we have x′0 = P

Jψ
C (x) = x0.

For any λ ∈ [0, 1], one has λx0+(1−λ)yn ∈ C. Since ϕψ(x, x0) ≤ ϕψ(x, λx0+
(1− λ)yn), we have

2 ⟨Jψ(x), (1− λ)(yn − x0)⟩ ≤ ∥λx0 + (1− λ)yn∥2 − ∥x0∥2.(2.4)

Since ϕψ(xn, yn) ≤ ϕψ(xn, x0), we get

2 ⟨−Jψ(xn), yn − x0⟩ ≤ ∥x0∥2 − ∥yn∥2.(2.5)

By (2.4) and (2.5), we have

2 ⟨Jψ(x)− Jψ(xn), yn − x0⟩
≤ ∥λx0 + (1− λ)yn∥2 − ∥yn∥2 + 2λ ⟨Jψ(x), yn − x0⟩
≤ λ∥x0∥2 + (1− λ)∥yn∥2 − ∥yn∥2 + 2λ ⟨Jψ(x), yn − x0⟩
= λ(∥x0∥2 − ∥yn∥2) + 2λ ⟨Jψ(x), yn − x0⟩ .

So

2 ⟨Jψ(x)− Jψ(xn), x0 − yn⟩ ≥ λ(∥yn∥2 − ∥x0∥2) + 2λ ⟨Jψ(x), x0 − yn⟩ .(2.6)
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Since ϕψ(x, x0) ≤ ϕψ(x, yn) and ϕψ(xn, yn) ≤ ϕψ(xn, λx0+(1−λ)yn), we have

2 ⟨Jψ(x)− Jψ(xn), x0 − yn⟩(2.7)

≥ 2(1− λ) ⟨−Jψ(xn), x0 − yn⟩+ (1− λ)(∥x0∥2 − ∥yn∥2).

By (2.6) and (2.7) with λ = 1
2 , we have

4 ⟨Jψ(x)− Jψ(xn), x0 − yn⟩ ≥ ∥yn∥2 − ∥x0∥+ 2 ⟨Jψ(x), x0 − yn⟩(2.8)

and

4 ⟨Jψ(x)− Jψ(xn), x0 − yn⟩ ≥ ∥x0∥ − ∥yn∥2 + 2 ⟨−Jψ(xn), x0 − yn⟩ .(2.9)

From the conditions that xn → x and yn → x0 weakly as n→ ∞, and combin-
ing (2.8) and (2.9), we have

∥yn∥ → ∥x0∥ as n→ ∞.

Since yn → x0 weakly as n → ∞ and B is reflexive and strictly convex, we

obtain yn → x0 as n→ ∞. Thus P
Jψ
C (xn) → P

Jψ
C (x). Hence P

Jψ
C is continuous

for any x ∈ B. □

Corollary 2.16 ([15]). If B is a reflexive, strictly convex and smooth Banach
space and C is a nonempty, closed and convex subset of B, then the generalized
projection operator P JC : B → C is continuous.

3. A characterization of the generalized best approximation with
the generalized duality mapping

In this section, we will give a characterization of generalized projections
with the generalized duality mapping. From this characterization, we can get
a characterization of metric projections, and generalized projections with the
normalized duality mapping.

Proposition 3.1. Let B be a smooth Banach space, C a nonempty, closed and

convex subset of B, and x ∈ B. Then x0 ∈ P
Jψ
C (x) if and only if

⟨J(x0)− Jψ(x), y − x0⟩ ≥ 0

for all y ∈ C.

Proof. Suppose that x0 ∈ P
Jψ
C (x). Let y ∈ C and λ ∈ (0, 1]. Then

ϕψ(x, x0) ≤ ϕψ(x, (1− λ)x0 + λy).

So

0 ≥ ϕψ(x, x0)− ϕψ(x, (1− λ)x0 + λy)

= 2 ⟨Jψ(x), λ(y − x0)⟩+ ∥x0∥2 − ∥(1− λ)x0 + λy∥2

≥ 2λ ⟨Jψ(x), y − x0⟩ − 2λ ⟨J((1− λ)x0 + λy), y − x0⟩
= 2λ ⟨Jψ(x)− J((1− λ)x0 + λy), y − x0⟩
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since ∥x0∥2 − ∥(1− λ)x0 + λy∥2 ≥ 2 ⟨J((1− λ)x0 + λy), λ(x0 − y)⟩. Then
⟨Jψ(x)− J((1− λ)x0 + λy), y − x0⟩ ≤ 0.

Taking the limit λ ↓ 0, we obtain

⟨Jψ(x)− J(x0), y − x0⟩ ≤ 0

since J is continuous. Thus

⟨J(x0)− Jψ(x), y − x0⟩ ≥ 0

for all y ∈ C.
Suppose that ⟨J(x0)− Jψ(x), y − x0⟩ ≥ 0 for all y ∈ C. Then for any y ∈ C,

we have

ϕψ(x, y)− ϕψ(x, x0) = ∥y∥2 − ∥x0∥2 − 2 ⟨Jψ(x), y − x0⟩
≥ 2 ⟨J(x0), y − x0⟩ − 2 ⟨Jψ(x), y − x0⟩
= 2 ⟨J(x0)− Jψ(x), y − x0⟩ ≥ 0

since ∥y∥2−∥x0∥2 ≥ 2 ⟨J(x0), y − x0⟩. Thus ϕψ(x, y) ≥ ϕψ(x, x0) for all y ∈ C

and so x0 ∈ P
Jψ
C (x). □

Corollary 3.2 ([2]). Let B be a smooth Banach space, C a nonempty, closed
and convex subset of B, and x ∈ B. Then x0 ∈ P JC (x) if and only if

⟨J(x0)− J(x), y − x0⟩ ≥ 0

for any y ∈ C.

If B is a Hilbert space, then J(x) = x for any x ∈ B. Then we have the
following.

Corollary 3.3 ([8]). Let H be a Hilbert space, C a nonempty, closed and
convex subset of H, and x ∈ H. Then x0 = PC(x) if and only if

⟨x0 − x, y − x0⟩ ≥ 0

for any y ∈ C.

Proposition 3.4. Let B be a smooth Banach space, C a closed subspace of B,

and x ∈ B. Then x0 ∈ P
Jψ
C (x) if and only if

⟨J(x0)− Jψ(x), y⟩ = 0

for any y ∈ C.

Proof. (⇒) Suppose that x0 ∈ P
Jψ
C (x). Since C is a subspace, x0−y, x0+y ∈ C

for all y ∈ C so by Proposition 3.1,

⟨J(x0)− Jψ(x), (x0 − y)− x0⟩ = ⟨J(x0)− Jψ(x),−y⟩ ≥ 0

for any y ∈ C. Similarly, we have

⟨J(x0)− Jψ(x), (x0 + y)− x0⟩ = ⟨J(x0)− Jψ(x), y⟩ ≥ 0
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for any y ∈ C. Thus

⟨J(x0)− Jψ(x), y⟩ = 0

for any y ∈ C.
(⇐) Suppose that ⟨J(x0)− Jψ(x), y⟩ = 0 for any y ∈ C. Since y − x0 ∈ C

for all y ∈ C, we have

⟨J(x0)− Jψ(x), y − x0⟩ ≥ 0

for any y ∈ C. By Proposition 3.1, x0 ∈ P
Jψ
C (x). □

Corollary 3.5 ([17]). Let B be a smooth Banach space, C a closed subspace
of B, and x ∈ B. Then x0 ∈ P JC (x) if and only if

⟨J(x0)− J(x), y⟩ = 0

for any y ∈ C.

Corollary 3.6 ([8]). Let H be a Hilbert space, C a closed subspace of H, and
x ∈ H. Then x0 = PC(x) if and only if

⟨x0 − x, y⟩ = 0

for any y ∈ C.

Proposition 3.7. Let B be a smooth Banach space, and let M(e) be the one-
dimensional subspace of B spanned by a vector e with the unit norm. Then for
any x ∈ B, we have

⟨Jψ(x), e⟩ e ∈ P
Jψ
M(e)(x).

Proof. Since J is homogeneous, for any λ ∈ R,

⟨J(⟨Jψ(x), e⟩ e)− Jψ(x), λe⟩ = λ ⟨Jψ(x), e⟩ − λ ⟨Jψ(x), e⟩ = 0.

By Proposition 3.4, we obtain

⟨Jψ(x), e⟩ e ∈ P
Jψ
M(e)(x). □

Corollary 3.8 ([4]). Let B be a smooth Banach space, and let M(e) be the
one-dimensional subspace of B spanned by a unit vector e. Then for any x ∈ B,
we have

⟨J(x), e⟩ e ∈ P JM(e)(x).

Example 1 ([4]). Let e =
(

1
3√2
, 1

3√2

)
and x = (1, 0) ∈ ℓ3(R2). Then PM(e)(x) ̸=

⟨J(x), e⟩ e. But ⟨J(x), e⟩ e ∈ P JM(e)(x) and ⟨Jψ(x), e⟩ e ∈ P
Jψ
M(e)(x).

Proposition 3.9. Let B be a smooth Banach space, let C be a nonempty,

closed and convex subset of B and let x ∈ B. Then for all x0 ∈ P
Jψ
C (x),

ϕψ(x, x0) + ϕ(x0, y) ≤ ϕψ(x, y) for all y ∈ C.
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Proof. By the definitions and Proposition 3.1, we have

ϕψ(x, y)− ϕψ(x, x0)− ϕ(x0, y)

=− 2 ⟨Jψ(x), y − x0⟩+ 2 ⟨J(x0), y⟩ − 2∥x0∥2

=2 ⟨J(x0)− Jψ(x), y − x0⟩ ≥ 0

for all y ∈ C. Thus

ϕψ(x, x0) + ϕ(x0, y) ≤ ϕψ(x, y) for all y ∈ C. □

Corollary 3.10 ([2]). Let B be a smooth Banach space, C a nonempty closed
and convex subset of B, and x ∈ B. Then for all x0 ∈ P JC (x),

ϕ(x, x0) + ϕ(x0, y) ≤ ϕ(x, y) for all y ∈ C.

Proposition 3.11 ([17]). Let B be a smooth Banach space, C a closed subspace

of B, and x ∈ B. Then for all x0 ∈ P
Jψ
C (x),

ϕψ(x, x0) + ϕ(x0, y) = ϕψ(x, y) for all y ∈ C.

Corollary 3.12. Let B be a smooth Banach space, C be a closed subspace of
B, and x ∈ B. Then for all x0 ∈ P JC (x),

ϕ(x, x0) + ϕ(x0, y) = ϕ(x, y) for all y ∈ C.

4. Strong convergence of approximating fixed point sequences

Let B be a smooth and uniformly convex Banach space, C a nonempty,
closed and convex subset of B and T : C → C a nonexpansive mapping such
that Fix(T ) ̸= ∅.

Recall that a sequence {xn} in C is said to be an approximating fixed point
sequence for T if

lim
n→∞

∥xn − Txn∥ = 0.

Now we want to construct an approximating fixed point sequence for a non-
expansive mapping T as follows: Starting an arbitrary initial guess x0, we can
construct an approximating fixed point sequence of T as follows. Take a se-
quence {tn} in (0, 1) so that tn → 0 as n→ ∞. If xn has been constructed, we
construct two closed convex subsets Cn and Qn such that C0 = Q0 = C and

Cn = co{z ∈ C | ∥z − Tz∥ ≤ tn∥xn − Txn∥},
Qn = {v ∈ C | ⟨J(xn)− Jψ(x0), v − xn⟩ ≥ 0)}

for n ≥ 1. Then we define the (n+ 1)th iterate xn+1 by

xn+1 = P
Jψ
Cn∩Qn(x0).(4.1)

Before discussing the convergence of the sequence {xn}, we first use induction
to verify that Fix(T ) ⊂ Cn∩Qn and xn+1 is well-defined. As a matter of fact, it
is trivial that Fix(T ) ⊂ Cn for all n ≥ 0. It is also trivial that Fix(T ) ⊂ Q0 = C
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and thus x1 = P
Jψ
C0∩Q0

(x0) is well-defined. Since x1 is the general projection of
x0 with Jψ onto C0 ∩Q0 = C, by Proposition 3.1 we have

⟨J(x1)− Jψ(x0), z − x1⟩ ≥ 0 for all z ∈ C0 ∩Q0.

Since Fix(T ) ⊂ C0 ∩ Q0, the last inequality holds for all z ∈ Fix(T ). This
together with the definition of Q1 implies that Fix(T ) ⊂ Q1. Assume now that
Fix(T ) ⊂ Qn and xn+1 is well-defined. We need to prove that Fix(T ) ⊂ Qn+1

and xn+2 is well-defined. Since xn+1 is the general projection of x0 with Jψ
onto Cn ∩Qn, by Proposition 3.1 we have

⟨J(xn+1)− Jψ(x0), z − xn+1⟩ ≥ 0 for all z ∈ Cn ∩Qn.
Since Fix(T ) ⊂ Cn ∩ Qn, the last inequality holds for all z ∈ Fix(T ). This
together with the definition of Qn+1 implies that Fix(T ) ⊂ Qn+1. Now as
the general projection of x0 with Jψ onto the nonempty closed convex subset
Cn+1 ∩Qn+1, xn+2 is well-defined. We used the similar terminology in [21].

We now state and prove the main result of this paper.

Theorem 4.1. Let B be a smooth and uniformly convex Banach space, C
a nonempty, closed and convex subset of B and T : C → C a nonexpansive
mapping such that Fix(T ) ̸= ∅. Let {xn} be the sequence generated by the
process (4.1). Then {xn} is an approximating fixed point sequence for T and
strongly convergent to a fixed point of T .

We need the following three lemmas to prove Theorem 4.1.

Lemma 4.2 ([12, 21]). Assume that B is a smooth and uniformly convex
Banach space. Consider two sequences {xn} and {yn}. If one of them is
bounded, then ϕ(xn, yn) → 0 if and only if ∥xn − yn∥ → 0.

Lemma 4.3 ([10]). Let B be a uniformly convex Banach space, C a nonempty,
closed and convex subset of B and T : C → C a nonexpansive mapping with a
fixed point. Then I −T is demiclosed in the sense that if {xn} is a sequence in
C and if xn → x weakly and (I − T )xn → y strongly for some x and y, then
(I − T )x = y.

Let

ωw(xn) =
{
x ∈ B | there is a subsequence {xnj} of {xn}

such that xnj → x weakly
}
.

The following lemma can be proved by the same argument of Lemma 2.2 in
[21]. For the sake of completeness, we include its proof.

Lemma 4.4. Let B be a smooth and uniformly convex Banach space and C
a nonempty closed convex subset of B. Let {xn} be a bounded sequence in B,

u ∈ B and let q = P
Jψ
C (u). Assume that {xn} satisfies the conditions

(i) ωw(xn) ⊂ C and
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(ii) ϕψ(u, xn) ≤ ϕψ(u, q).

Then xn → q.

Proof. Since B is reflexive and {xn} is bounded, ωw(xn) is nonempty. Since
ϕψ(u, ·) is weak lower semi-continuous. It follows from (ii) that

ϕψ(u, v) ≤ ϕψ(u, q) for all v ∈ ωw(xn).

Since ωw(xn) ⊂ C and q = P
Jψ
C (u), we must have v = q for all v ∈ ωw(xn).

Thus ωw(xn) = {q} and xn → q weakly.
To see xn → q, we observe that the inequality ϕψ(u, xn) ≤ ϕψ(u, q) in

condition (ii) is equivalent to

∥xn∥2 ≤ ∥q∥2 + 2 ⟨Jψ(u), xn − q⟩ .

Since xn → q weakly, it follows that

lim sup
n→∞

∥xn∥ ≤ ∥q∥.

This and the uniform convexity of B imply that

xn → q. □

Proof of Theorem 4.1. First we observe that {xn} is bounded. From the defi-

nition of Qn and the characterization of P
Jψ
Qn

(Proposition 3.1), we have xn =

P
Jψ
Qn

(x0). Hence by Proposition 3.9,

ϕψ(x0, xn) + ϕ(xn, y) ≤ ϕψ(x0, y) for all y ∈ Qn.(4.2)

Since Fix(T ) ⊂ Qn, we get

ϕψ(x0, xn) ≤ ϕψ(x0, p) for all p ∈ Fix(T ).(4.3)

Thus {xn} is bounded. Since xn+1 ∈ Qn, we can substitute it for y in (4.2) to
get

ϕ(xn, xn+1) ≤ ϕψ(x0, xn+1)− ϕψ(x0, xn).(4.4)

Thus

ϕψ(x0, xn) ≤ ϕψ(x0, xn+1)

and so the sequence {ϕψ(x0, xn)} is increasing (and also bounded). Hence
limn→∞ ϕψ(x0, xn) exists. Back to (4.4), we conclude that ϕ(xn, xn+1) → 0
and so ∥xn+1 − xn∥ → 0 by Lemma 4.2.

We now claim that {xn} is an approximating fixed point sequence of T . Let

C̃ be a bounded closed convex subset of C which contains all the points xn and
Txn for all n and let η = diam(C̃). Since xn+1 ∈ Cn and by the definition of
Cn, we have ∥∥∥∥∥xn+1 −

ℓ∑
i=1

λizi

∥∥∥∥∥ < tn,
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where λi > 0 satisfying
∑ℓ
i=1 λi = 1 and each zi ∈ C satisfies

∥zi − Tzi∥ ≤ tn∥xn − Txn∥ ≤ ηtn.

By Bruck [5], there exists a continuous strictly increasing function γ (depending
only on η) with γ(0) = 0 and such that

γ

(∥∥∥∥∥T
(

m∑
i=1

µivi

)
−

m∑
i=1

µiTvi

∥∥∥∥∥
)

≤max{∥vi − vj∥ − ∥Tvi − Tvj∥ | 1 ≤ i, j ≤ m}

for all integers m > 1, all points {vi} in C̃, and all nonnegative numbers {µi}
such that

∑m
i=1 µi = 1. It follows that

∥xn+1 − Txn+1∥

≤

∥∥∥∥∥xn+1 −
ℓ∑
i=1

λizi

∥∥∥∥∥+
∥∥∥∥∥

ℓ∑
i=1

λi(zi − Tzi)

∥∥∥∥∥
+

∥∥∥∥∥
ℓ∑
i=1

λiTzi − T

(
ℓ∑
i=1

λizi

)∥∥∥∥∥+
∥∥∥∥∥T
(

ℓ∑
i=1

λizi

)
− Txn+1

∥∥∥∥∥
≤ (2 + η)tn + γ−1(max{∥zi − zj∥ − ∥Tzi − Tzj∥ | 1 ≤ i, j ≤ ℓ})
≤ (2 + η)tn + γ−1(max{∥zi − Tzi∥+ ∥zj − Tzj∥ | 1 ≤ i, j ≤ ℓ})
≤ (2 + η)tn + γ−1(2ηtn)

→ 0 as n→ ∞.

Therefore {xn} is an approximating fixed point sequence.
Finally let us prove that {xn} is strongly convergent to a fixed point of T . By

the demiclosedness principle (Lemma 4.3), we have ωw(xn) ⊂ Fix(T ). Let q =

P
Jψ
Fix(T )(x0). By (4.3), we see that ϕψ(x0, xn) ≤ ϕψ(x0, q) for all n. Therefore,

applying Lemma 4.4 to the nonempty closed convex subset C := Fix(T ), we
conclude that

xn → q. □
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