• Title/Summary/Keyword: characteristics of down

Search Result 2,261, Processing Time 0.032 seconds

Characteristics of Nick Knight's Works as a Fashion Visual Maker (패션 비주얼 메이커 닉 나이트(Nick Knight)의 작품특성)

  • Kim, Ji Young
    • Journal of the Korean Society of Costume
    • /
    • v.63 no.4
    • /
    • pp.101-117
    • /
    • 2013
  • The purpose of this study is to consider the works of Nick Knight, the most influential fashion visual maker, to find out the characteristics of his works. For the research method, literature reviews were done by studying his book, viewing the articles on his official web site, reading journal review of his works and his interview articles. For the work analysis, fashion brands 'Christian Dior', 'Alexander McQueen', 'Martin Margiela', 'Hussein Chalayan' and 'Gareth Pugh' that have worked with Nick Knight were selected. The characteristics of his fashion works were derived from overall analysis of fashion visual works. The characteristics of Nick Knight's works are as follows. First is the 'innovation of image expression'. He used digital infra in advance and introduced digital images at the initial stage. He used fashion films as the means of communication and tried new image expressions in 3D. Second is 'breaking down the boundaries of creating process'. He worked with various field experts to make high quality works. He invited the public to participate in his creative process through the internet. Third is 'breaking down the categories of aesthetic expression'. He provided a wide variety of aesthetic standard and refused aesthetic stereotype. He broke the boundaries between fashion and art with a unique technique and high values.

Fabrication and Properties of Piezoelectric Transformer for Step-Down Voltage using Ceramic Stack Process (세라믹 적층공정을 이용한 강압용 압전변압기의 제작 및 특성)

  • Lee, Chang-Bae;Yoon, Jung-Rag
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.164-164
    • /
    • 2009
  • A multilayer piezoelectric transformer(MPT) for step-down voltage was made by ceramic stack process. And then, the characteristics of piezoelectric transformer, such as resonance frequency, matching impedance, electro-mechanical coupling coefficient, voltage gain, heat generation and efficiency, are analyzed. The piezoelectric transformer consists of a lead zirconate titanate ceramic with a high electromechanical quality factor. The piezoelectric transformer, with a multilayered construction in the thickness direction, was formed with dimensions 15mm long, 15mm wide and 5mm thick.

  • PDF

Interrupting characteristics of the transformer superconducting fault current limiter

  • Hwang, S.H.;Choi, H.W.;Jeong, I.S.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.40-44
    • /
    • 2017
  • This paper analyzed the fault current limiting characteristics of the previously proposed transformer superconducting fault current limiter (TSFCL) interruption system according to its transformer type. The TSFCL interruption system is an interruption technology that combines a TSFCL, which uses a transformer and a superconductor, and a mechanical DC circuit breaker. This technology first limits the fault current using the inductance of the transformer winding and the quench characteristics of the superconductor. The limited fault current is then interrupted by a mechanical DC circuit breaker. The magnitude of the limited fault current can be controlled by the quench resistance of the superconductor in the TSFCL and the turns ratio of the transformer. When the fault current is controlled using a superconductor, additional costs are incurred due to the cooling vessel and the length of the superconductor. When the fault current is controlled using step-up and step-down transformers, however, it is possible to control the fault current more economically than using the superconductor. The TSFCL interruption system was designed using PSCAD/EMTDC-based analysis software, and the fault current limiting characteristics according to the type of the transformer were analyzed. The turns ratios of the step-up and step-down transformers were set to 1:2 and 2:1. The results were compared with those of a transformer with a 1:1 turns ratio.

scale-down of the Nonvolatile MONOS Memory Devices for the 5V-Programmable E$^2$PROM (5V-Programmable E$^2$PROM을 위한 비휘발성 MONOS 기억소자의 Scale-down)

  • 이상배;이상은;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.33-36
    • /
    • 1994
  • The characteristics of the nonvolatile MONOS memory devices as the nitride thickness is scaled down while maintaining constant tunneling oxide thickness and blocking oxide thickness have been investigated in order to obtain the 5V-programmable E$^2$PROM. We have found that 1V memory window for a 5V programming voltage and 10 year data retention can be achieved in the scaled MONOS memory devices with a 50 blocking oxide, a 57 nitride and a 19 tunneling oxide.

A Study on Flow and Heat Transfer in One Directional Periodic-Oscillating Cylinder (일방향 주기적 진동하는 원통 내의 유동 및 열전달 연구)

  • Park, Jun-Sang
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.22-28
    • /
    • 2010
  • A study has been made of cool-down process on an incompressible fluid contained in a periodically oscillating cylinder when an abrupt cooling of wall temperature is imposed. Characteristics of flow and heat transfer are investigated along the variations of oscillating frequency and amplitude. One found the flow regimes are divided into 4-modes : 1 thermal island mode, 2 thermal island mode, 4 thermal island mode and asymmetry mode. Comprehensive analysis for each mode are given with a physical mechanism on cool-down process.

Analysis of Electrical Characteristics for Double Gate MOSFET (Double Gate MOSFET의 전기적 특성 분석)

  • 김근호;김재홍;고석웅;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.261-263
    • /
    • 2002
  • CMOS devices have scaled down to sub-50nm gate to achieve high performance and high integration density. Key challenges with the device scaling are non-scalable threshold voltage( $V^{th}$ ), high electric field, parasitic source/drain resistance, and $V^{th}$ variation by random dopant distribution. To solve scale-down problem of conventional structure, a new structure was proposed. In this paper, we have investigated double-gate MOSFET structure, which has the main-gate and the side-gates, to solve these problem.

  • PDF

A Comparison of Soil Characteristics of Excavated Soils in Urban Area (도심지 굴착지반의 지반특성 비교)

  • Kim, Byungchan;Lee, JineHaeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This is a comparative study on the characteristics of excavated soils, which is proceeded using soil strength parameter by literature, geotechnical investigation, standard penetration test by drilling, and downhole test by borehole at six sites in urban areas. The results of these site surveys are used as basic data for the evaluation and development of prediction of ground subsidence risk. Geotechnical properties are estimated with the result of standard penetration test-N value and literature. The dynamic geotechnical characteristics are also estimated with top-down seismic exploration at borehole.

A Study on a Catenary Impedance Estimation Technique using Boosting Current Compensation Based on Current Division Characteristics of an AT Feeding System

  • Jung, Hosung;Kim, Hyungchul;Chang, Sang-Hoon;Kim, Joorak;Min, Myung-Hwan;An, Tae-Pung;Kwon, Sung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1370-1376
    • /
    • 2015
  • Generally, an autotransformer(AT) feeding system consists of double tracks, up and down, with the trolley wire and feeder wire of the up and down tracks connected in the sectioning post(SP). Consequently, load current or fault current flows on two tracks based on catenary impedance characteristics, making it difficult to estimate catenary impedance accurately. This paper presents a technique for the estimation of catenary impedance using boosting current compensation based on the current division characteristics of an AT feeding system to improve the operation performance of impedance relay. To verify the technique, we model an AT feeding system through a power analysis program (PSCAD/EMTDC) and simulate various operation and fault conditions. Through the simulation, we confirmed that the proposed technique has estimated catenary impedance with a similar degree of accuracy to the actual catenary impedance

Analysis of Transport Characteristics for Double Gate MOSFET using Analytical Current-Voltage Model (해석학적 전류-전압모델을 이용한 이중게이트 MOSFET의 전송특성분석)

  • Jung Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1648-1653
    • /
    • 2006
  • In this paper, transport characteristics have been investigated using analytical current-voltage model for double gate MOSFET(DGMOSFET). Scaling down to 100nm of gate length for MOSFET can bring about various problems such as a threshold voltage roll-off and increasing off current by tunneling since thickness of oxide is down by 1.fnm and doping concentration is increased. A current-voltage characteristics have been calculated according to changing of channel length,using analytical current-voltage relation. The analytical model has been verified by calculating I-V relation according to changing of oxide thickness and channel thickness as well as channel length. A current-voltage characteristics also have been compared and analyzed for operating temperature. When gate voltage is 2V, it is shown that a current-voltage characteristic in 77K is superior to in room temperature.

Statistical Analysis on Process Variables in Linear Roll-CMP (선형 Roll-CMP에서 공정변수에 관한 통계적 분석)

  • Wang, Han;Lee, Hyunseop;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.139-145
    • /
    • 2014
  • Nowadays, most micro-patterns are manufactured during flow line production. However, a conventional rotary chemical mechanical polishing (CMP) system has a limited throughput for the fabrication of large and flexible electronics. To overcome this problem, we propose a novel linear roll-CMP system for the planarization of large-area electronics. In this paper, we present a statistical analysis on the linear roll-CMP process of copper-clad laminate (CCL) to determine the impacts of process parameters on the material removal rate (MRR) and its non-uniformity (NU). In the linear roll-CMP process, process parameters such as the slurry flow rate, roll speed, table feed rate, and down force affect the MRR and NU. To determine the polishing characteristics of roll-CMP, we use Taguchi's orthogonal array L16 (44) for the experimental design and F-values obtained by the analysis of variance (ANOVA). We investigate the signal-to-noise (S/N) ratio to identify the prominent control parameters. The "higher is better" for the MRR and "lower is better" for the NU were selected for obtaining optimum CMP performance characteristics. The experimental and statistical results indicate that the down force and roll speed mainly affect the MRR and the down force and table feed rate determine the NU in the linear roll-CMP process. However, over 186.3 N of down force deteriorates the NU because of the bending of substrate. Roll speed has little relationship to the NU and the table feed rate does not impact on the MRR. This study provides information on the design parameter of roll-CMP machine and process optimization.