• Title/Summary/Keyword: chaotic

Search Result 904, Processing Time 0.025 seconds

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

Chaotic Evaluation of Slag Inclusion Welding Defect Time Series Signals Considering the Hyperspace (초공간을 고려한 슬래그 혼입 용접 결함 시계열 신호의 카오스성 평가)

  • Yi, Won;Yun, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.226-235
    • /
    • 1998
  • This study proposes the analysis and evaluation of method of time series of ultrasonic signal using the chaotic feature extraction for ultrasonic pattern recognition. The features are extracted from time series data for analysis of weld defects quantitatively. For this purpose, analysis objectives in this study are fractal dimension, Lyapunov exponent, and strange attractor on hyperspace. The Lyapunov exponent is a measure of rate in which phase space diverges nearby trajectories. Chaotic trajectories have at least one positive Lyapunov exponent, and the fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal(correlation) dimensions and Lyapunov exponents show the mean value of 4.663, and 0.093 relatively in case of learning, while the mean value of 4.926, and 0.090 in case of testing in slag inclusion(weld defects) are shown. Therefore, the proposed chaotic feature extraction can be enhancement of precision rate for ultrasonic pattern recognition in defecting signals of weld zone, such as slag inclusion.

  • PDF

Microcontroller-based Chaotic Signal Generator for Securing Power Line Communication: Part I-A System View (전력선 암호화 통신을 위한 마이크로콘트롤러 기반 카오스 신호 발생기: 1부 - 시스템 뷰)

  • Al-Shidaifat, Ala'aDdin;Jayawickrama, Chamindra;Ji, Sunghyun;Nguyen, Van Ha;Kwon, Yoo-Jin;Song, Hanjung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.563-567
    • /
    • 2016
  • In this paper, the chaos-based secure scheme for power line communication is proposed for the first time. A digitalized chaotic generator based Lorenz system is utilized for generating nonlinear dynamic chaotic signal for masking the information signal instead of reported analog chaotic generators. A simple method of encryption and decryption is also given. In order to confirm the feasibility of the proposed scheme, the system is simulated using a simplified encryption/decryption method in Proteus. The gained results from simulation demonstrated that by using the chaos-based security method, the data can be encrypted and easily transmitted through the power line network efficiently.

Chaotic Circuit with Voltage Controllability for Secure Communication Applications (암호통신 응용을 위한 전압제어형 카오스 신호 발생회로)

  • Zhou, Jichao;Shin, Bong-Jo;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4159-4164
    • /
    • 2012
  • This paper presents a chaotic circuit with voltage controllability for secure communication applications. The proposed circuit which has two control voltages consists of the nonlinear function block(NFB) with three MOS transistors, one source follower and non-overlapping two-phase clock generator for sample and hold. By SPICE simulation, chaotic dynamics such as time waveform, frequency analysis and bifurcations were analyzed. SPICE results showed that proposed circuit can make various chaotic signals by control voltage.

Damage identification using chaotic excitation

  • Wan, Chunfeng;Sato, Tadanobu;Wu, Zhishen;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.87-102
    • /
    • 2013
  • Vibration-based damage detection methods are popular for structural health monitoring. However, they can only detect fairly large damages. Usually impact pulse, ambient vibrations and sine-wave forces are applied as the excitations. In this paper, we propose the method to use the chaotic excitation to vibrate structures. The attractors built from the output responses are used for the minor damage detection. After the damage is detected, it is further quantified using the Kalman Filter. Simulations are conducted. A 5-story building is subjected to chaotic excitation. The structural responses and related attractors are analyzed. The results show that the attractor distances increase monotonously with the increase of the damage degree. Therefore, damages, including minor damages, can be effectively detected using the proposed approach. With the Kalman Filter, damage which has the stiffness decrease of about 5% or lower can be quantified. The proposed approach will be helpful for detecting and evaluating minor damages at the early stage.

An Efficient Image Encryption Scheme Based on Quintuple Encryption Using Gumowski-Mira and Tent Maps

  • Hanchinamani, Gururaj;Kulkarni, Linganagouda
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.56-69
    • /
    • 2015
  • This paper proposes an efficient image encryption scheme based on quintuple encryption using two chaotic maps. The encryption process is realized with quintuple encryption by calling the encrypt(E) and decrypt(D) functions five times with five different keys in the form EDEEE. The decryption process is accomplished in the reverse direction by invoking the encrypt and decrypt functions in the form DDDED. The keys for the quintuple encryption/decryption processes are generated by using a Tent map. The chaotic values for the encrypt/decrypt operations are generated by using a Gumowski-Mira map. The encrypt function E is composed of three stages: permutation, pixel value rotation and diffusion. The permutation stage scrambles all the rows and columns to chaotically generated positions. This stage reduces the correlation radically among the neighboring pixels. The pixel value rotation stage circularly rotates all the pixels either left or right, and the amount of rotation is based on chaotic values. The last stage performs the diffusion four times by scanning the image in four different directions: Horizontally, Vertically, Principal diagonally and Secondary diagonally. Each of the four diffusion steps performs the diffusion in two directions (forward and backward) with two previously diffused pixels and two chaotic values. This stage ensures the resistance against the differential attacks. The security and performance of the proposed method is investigated thoroughly by using key space, statistical, differential, entropy and performance analysis. The experimental results confirm that the proposed scheme is computationally fast with security intact.

Effects on Fractal Dimension by Automobile Driver's EEG during Highway Driving : Based on Chaos Theory (직선 고속 주행시 운전자의 뇌파가 프랙탈 차원에 미치는 영향: 카오스 이론을 중심으로)

  • 이돈규;김정룡
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.57
    • /
    • pp.51-62
    • /
    • 2000
  • In this study, the psycho-physiological response of drivers was investigated in terms of EEG(Electroencephalogram), especially with the fractal dimensions computed by Chaotic algorithm. The Chaotic algorithm Is well Known to sensitively analyze the non-linear information such as brain waves. An automobile with a fully equipped data acquisition system was used to collect the data. Ten healthy subjects participated in the experiment. EEG data were collected while subjects were driving the car between Won-ju and Shin-gal J.C. on Young-Dong highway The results were presented in terms of 3-Dimensional attractor to confirm the chaotic nature of the EEG data. The correlation dimension and fractal dimension were calculated to evaluate the complexity of the brain activity as the driving duration changes. In particular, the fractal dimension indicated a difference between the driving condition and non-driving condition while other spectral variables showed inconsistent results. Based upon the fractal dimension, drivers processed the most information at the beginning of the highway driving and the amount of brain activity gradually decreased and stabilized. No particular decrease of brain activity was observed even after 100 km driving. Considering the sensitivity and consistency of the analysis by Chaotic algorithm, the fractal dimension can be a useful parameter to evaluate the psycho-physiological responses of human brain at various driving conditions.

  • PDF

Nonlinear Analysis in Love Dynamics with Triangular Membership Function as External Force (삼각 퍼지 소속 함수를 외력으로 가진 사랑 동력학에서의 비선형 해석)

  • Bae, Young-Chul
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.217-224
    • /
    • 2017
  • Recently, we have been continued effort that chaotic theory apply into love model which is an area of social science. To make the chaotic behaviors in the differential equation that represent as Romeo and Juliet, we apply an external force to the differential equation. However, this external force have disadvantage that cannot exactly represent for emotion of human. In this paper, to solve these advantage, we introduce triangular fuzzy membership function to provide the external force that can describe most similar status for action and word of human in the love model of Romeo and Juliet. Also, to confirm the chaotic behaviors in the love model of Romeo and Juliet with proposed fuzzy membership function, we use time series and phase plane.

An Efficient Chaotic Image Encryption Algorithm Based on Self-adaptive Model and Feedback Mechanism

  • Zhang, Xiao;Wang, Chengqi;Zheng, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1785-1801
    • /
    • 2017
  • In recent years, image encryption algorithms have been developed rapidly in order to ensure the security of image transmission. With the assistance of our previous work, this paper proposes a novel chaotic image encryption algorithm based on self-adaptive model and feedback mechanism to enhance the security and improve the efficiency. Different from other existing methods where the permutation is performed by the self-adaptive model, the initial values of iteration are generated in a novel way to make the distribution of initial values more uniform. Unlike the other schemes which is on the strength of the feedback mechanism in the stage of diffusion, the piecewise linear chaotic map is first introduced to produce the intermediate values for the sake of resisting the differential attack. The security and efficiency analysis has been performed. We measure our scheme through comprehensive simulations, considering key sensitivity, key space, encryption speed, and resistance to common attacks, especially differential attack.

The Types of Family System and Psychological Distance in Family Perceived by Adolescent Child (청소년기 자녀가 지각한 가족체계유형과 가족내 심리적 거리)

  • 최윤실
    • Journal of Families and Better Life
    • /
    • v.11 no.1
    • /
    • pp.159-175
    • /
    • 1993
  • The purpose of this study was to find out the psychological distance through semantic app-roach perceived by adolescent child in the subtypes of 'Extrem Family' dysfunctional families by classification of Olson and his associates ' Circrumplex Model. The subjects of this research were 1072 abolescents living in Seoul. Korea The survey methods were questionnaires including FACES II and The Psychological Distance Scale. Data were analyzed by means of the statistics of frequency percentage arithematic mean standard devia-tion crosstabs and one way-anova. The major findings are as follows: 1) The levels of family cohesion family adaptibility and the psychologival distances with father mother and siblings perceived by adolescent were high. 2) The most of subject's families belonged to 'Balanced Family' in the types of family system ' Extreme Family' type showed the lowest frequency and the main subtypes of it that had the highest frequency were 'Enmeshed Chaotic Family' ' Disengaged Rigid Family' 3) While adolescents of 'Enmeshed Chaotic Family' perceived most closely with other family members. those of 'Disengated Rigid Family' most distantly totally and in evaluation potency and activity three subfactors in psychological distance. 4) There were differences of unit points in subfactors of psychological distances with other family members perceived by adolescents according to the types of family system. While the points of 'Enmeshed Chaotic Family' were the highest those of 'Disengaged Rigid Family' were the lowest. 5) While 'Enmeshed Chaotic Family' were located most closely 'Disengaged Rigid Family' were located most distantly in the mutual distances and direct distances among family concepts on semantic space.

  • PDF