• 제목/요약/키워드: chaotic

검색결과 904건 처리시간 0.021초

Generating Complex Klinokinetic Movements of 2-D Migration Circuits Using Chaotic Model of Fish Behavior

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • 제10권3호
    • /
    • pp.159-169
    • /
    • 2007
  • The complex 2-dimensional movements of fish during an annual migration circuit were generated and simulated by a chaotic model of fish movement, which was expanded from a small-scale movement model. Fish migration was modeled as a neural network including stimuli, central decision-making, and output responses as variables. The input stimuli included physical stimuli (temperature, salinity, turbidity, flow), biotic factors (prey, predators, life cycle) and landmarks or navigational aids (sun, moon, weather), values of which were all normalized as ratios. By varying the amplitude and period coefficients of the klinokinesis index using chaotic equations, model results (i.e., spatial orientation patterns of migration through time) were represented as fish feeding, spawning, overwintering, and sheltering. Simulations using this model generated 2-dimesional annual movements of sea bream migration in the southern and western seas of the Korean Peninsula. This model of object-oriented and large-scale fish migration produced complicated and sensitive migratory movements by varying both the klinokinesis coefficients (e.g., the amplitude and period of the physiological month) and the angular variables within chaotic equations.

CHAOTIC THRESHOLD ANALYSIS OF NONLINEAR VEHICLE SUSPENSION BY USING A NUMERICAL INTEGRAL METHOD

  • Zhuang, D.;Yu, F.;Lin, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.33-38
    • /
    • 2007
  • Since it is difficult to analytically express the Melnikov function when a dynamic system possesses multiple saddle fixed points with homoclinic and/or heteroclinic orbits, this paper investigates a vehicle model with nonlinear suspension spring and hysteretic damping element, which exhibits multiple heteroclinic orbits in the unperturbed system. First, an algorithm for Melnikov integrals is developed based on the Melnikov method. And then the amplitude threshold of road excitation at the onset of chaos is determined. By numerical simulation, the existence of chaos in the present system is verified via time history curves, phase portrait plots and $Poincar{\acute{e}}$ maps. Finally, in order to further identify the chaotic motion of the nonlinear system, the maximal Lyapunov exponent is also adopted. The results indicate that the numerical method of estimating chaotic threshold is an effective one to complicated vehicle systems.

Chaotic Features for Dynamic Textures Recognition with Group Sparsity Representation

  • Luo, Xinbin;Fu, Shan;Wang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4556-4572
    • /
    • 2015
  • Dynamic texture (DT) recognition is a challenging problem in numerous applications. In this study, we propose a new algorithm for DT recognition based on group sparsity structure in conjunction with chaotic feature vector. Bag-of-words model is used to represent each video as a histogram of the chaotic feature vector, which is proposed to capture self-similarity property of the pixel intensity series. The recognition problem is then cast to a group sparsity model, which can be efficiently optimized through alternating direction method of multiplier algorithm. Experimental results show that the proposed method exhibited the best performance among several well-known DT modeling techniques.

얕은 직사각형 통내의 혼돈적 교반 (The Chaotic Stirring in a Shallow Rectangular Tank)

  • 서용권;문종춘
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.380-388
    • /
    • 1994
  • Study on the chaotic stirring has been performed numerically and experimentally for a shallow rectangular tank accompanying a vortex shedding. The model is composed of a rectangular tank with a vertical plate with a length half the width of the tank. The tank is subject to a horizontal sinusoidal oscillation. The chaotic stirring was analysed by Poincare sections, unstable manifolds and Lyapunov exponents. As Reynolds number is increased the stirring effect is decreased due to the growth of a regular regions near the lower surface of the tank. In the other hand decrease of Reynolds number gives a weaker vortex shedding resulting in the poorer stirring effect. It was also found that the Lyapunov exponent is the highest at the dimensionless period of 1.3-1.5, which seems to be the best condition for the efficient stirring. The experimental visualization for the deformation of materials exhibits the striation pattern similar to the unstable manifold obtained numerically.

DENSITY DEPENDENT MORTALITY OF INTERMEDIATE PREDATOR CONTROLS CHAOS-CONCLUSION DRAWN FROM A TRI-TROPHIC FOOD CHAIN

  • NATH, BINAYAK;DAS, KRISHNA PADA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권3호
    • /
    • pp.179-199
    • /
    • 2018
  • The paper explores a tri-trophic food chain model with density dependent mortality of intermediate predator. To analyze this aspect, we have worked out the local stability of different equilibrium points. We have also derived the conditions for global stability of interior equilibrium point and conditions for persistence of model system. To observe the global behaviour of the system, we performed extensive numerical simulations. Our simulation results reveal that chaotic dynamics is produced for increasing value of half-saturation constant. We have also observed trajectory motions around different equilibrium points. It is noticed that chaotic dynamics has been controlled by increasing value of density dependent mortality parameter. So, we conclude that the density dependent mortality parameter can be used to control chaotic dynamics. We also applied basic tools of nonlinear dynamics such as Poincare section and Lyapunov exponent to investigate chaotic behaviour of the system.

웨이블렛 신경 회로망을 이용한 혼돈 비선형 시스템의 모델링 (The Modeling of Chaotic Nonlinear Systems Using Wavelet Neural Networks)

  • 박상우;최종태;윤태성;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2034-2036
    • /
    • 2002
  • In this paper, we propose the modeling of a chaotic nonlinear system using wavelet neural networks. In our modeling, we used the parameter adjusting method as the training method of a wavelet neural network. The difference between the actual output of a nonlinear chaotic system and that of a wavelet neural network adjusts the parameters of a wavelet neural network using the gradient-descent method. To verify the efficiency of this paper, we perform the simulation using Duffing system, which is a representative continuous time chaotic nonlinear system.

  • PDF

시스템 규명을 통한 외팔 송수관의 비선형 동적 거동 해석 (Nonlinear Dynamic Analysis of a Cantilever Tube Conveying Fluid with System Identification)

  • 임재훈;정구충;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.495-500
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experiment and theoretical analysis. These kind of studies have often been performed that finds the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and coefficient of viscoelasticity in tube material are discussed. The parameters are investigated by means of a system identification so that comparisons are made between numerical analysis using the parameters of a handbook and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits and bifurcation diagram so that one can define optimal parameters for system design.

  • PDF

Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

  • Yoo Sung Jin;Park Jin Bae;Choi Yoon Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권1호
    • /
    • pp.43-55
    • /
    • 2005
  • In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.

A study on Synchronization method for Mutual Cooperative Control in the Chaotic UAV

  • Bae Young-Chul;Kim Chun-Suk;Koo Young-Duk
    • Journal of information and communication convergence engineering
    • /
    • 제4권1호
    • /
    • pp.28-35
    • /
    • 2006
  • In this paper, we propose to synchronization method for mutual cooperative control method that have unstable limit cycles in a chaos trajectory surface in the chaotic UAVs. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Arnold equation, Chua's equation trajectories with one or more Van der Pol as a obstacles. We proposed and verified the results of the method to make the embedding chaotic UAV to synchronization with the chaotic trajectory in any plane.

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 제어기 설계 (Controller Design using PreFilter Type Chaotic Neural Networks Compensator)

  • 최운하;김상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.651-653
    • /
    • 1998
  • This thesis propose the prefilter type control strategies using modified chaotic neural networks #or the trajectory control of robotic manipulator. Since the structure of chaotic neural networks and neurons, chaotic neural networks can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis PUMA robot is designed by CNN. The CNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on- line learning and the performance is excellent. The CNN controller have much better controllability and shorter calculation time compared to the RNN controller. Another advantage of the proposed controller could be attached to conventional robot controller without hardware changes.

  • PDF