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Abstract 
 

Dynamic texture (DT) recognition is a challenging problem in numerous applications. In this 

study, we propose a new algorithm for DT recognition based on group sparsity structure in 

conjunction with chaotic feature vector. Bag-of-words model is used to represent each video 

as a histogram of the chaotic feature vector, which is proposed to capture self-similarity 

property of the pixel intensity series. The recognition problem is then cast to a group sparsity 

model, which can be efficiently optimized through alternating direction method of multiplier 

algorithm. Experimental results show that the proposed method exhibited the best 

performance among several well-known DT modeling techniques. 
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1. Introduction 

Dynamic textures (DTs) are videos that exhibit certain temporal stationarity. Examples of 

DTs in nature are fire, river, and boiling water. DT applications range from remote monitoring 

for prevention of natural disasters, such as forest fires, to various types of surveillance, such as 

public security and traffic flow. However, DT recognition in a dynamic environment is 

challenging because of various changes in appearance, such as illumination, scale, and 

viewpoint changes. 

DTs are generated by a complex time-varying dynamical system. A complete description of 

this system requires enumeration of all independent variables and differential equations 

controlling the evolution. A set of variables defining the state space is selected to obtain the 

description of a dynamical system, and a function maps the previous state to the next one. The 

type of mapping function determines whether the system is linear or non-linear. For instance, 

DTs can be represented in terms of state variables defined as the pixel intensity or pixel 

intensity over time, followed by assuming a linear or non-linear dynamical model. However, 

obtaining a complete analytic description of a dynamical system is extremely difficult in 

practical scenarios. Classical algorithms of DT recognition based on linear dynamical systems 

(LDSs) often assume that the model is first-order Markov and linear, thereby restricting 

nonlinear DT modeling. 

Chaos theory was developed to study nonlinear systems [1] and achieved great success in 

science and technology. Chaotic features that capture motion information have been used in 

action recognition [2], dynamic scene understanding [3], and anomaly detection [4].  

Fig. 1 (a) illustrates DTs of fire from a dataset [5]. People cannot determine whether the fire 

is a forest fire or a candle fire; this condition is called self-similarity, wherein the object has the 

same structure at all scales. Fig. 1 (b) shows two pixel intensity series in positions (5, 5) and 

(15, 5). The horizontal row and vertical column denote time and pixel intensity, respectively. 

Many physical processes produce fractal property, and a natural scene can be modeled by 

fractal dimension [6]. Several natural textures have a linear log power spectrum, which is 

related to the fractal dimension and is suitable to characterize textures [7]. Self-similarity is 

conjectured to exist in each pixel intensity series as the DTs exhibit certain stationary 

properties in time domain [5]. Therefore, we computed fractal dimension from each pixel 

intensity series. 

A recent study on DT recognition showed no specific preferences on classifier selection. 

Nearest neighbor (NN) [2, 14] and support vector machine (SVM) [3, 13] are commonly used 

in object recognition. Sparse representation has received wide attention in visual recognition 

because of its robustness against occlusions and noise. Facial recognition is formulated as 

finding a sparse linear combination of dictionary templates [8]. However, this method 

separately learns sparse representation of training data and ignores the relationships among the 

training data, which ultimately constrain their representation. Multi-task sparse learning 

recently aims to extend the    framework to jointly learn the sparse model. Multi-task learning 

has been applied in image classification [16] and annotation [17]. The present work used two 

sparse models [9] to capture the relations across features. In particular, the recognition model 

is formulated to two sparsity norms: a      norm and     norm, which penalizes the sum of 

maximum absolute values of each row to capture the shared and non-shared features, 

respectively. To efficiently solve the model, we utilized the alternating direction method of 

multiplier algorithm for optimization with guaranteed fast convergence rate. The classification 



4558                                                  Luo et al.: Chaotic Features for Dynamic Textures Recognition with Group Sparsity Representation 

is ruled in favor of the class that has the lowest total reconstruction error. 

 

 
Fig. 1. (a) One frame from fire video. (b) Pixel intensity series in positions (5, 5) and (15, 5). 

 

The contributions of this work are as follows: 

(1) Pixel intensity series is treated as a basic feature to describe DTs. Prior studies [10, 26] 

mainly focused on the spatial information of DTs and ignored the temporal information. 

Optical flow method is used to characterize the temporal information of DTs. However, 

this method only computes motion information between two frames. Pixel intensity series 

contains the complete temporal information that can be used to represent the DTs. Chaotic 

feature is introduced to characterize pixel intensity series. Prior work used chaotic features 

such as largest Lyapunov exponent, correlation dimension, and correlation integral to 

represent the motion information of the time series. In the present work, box count 

dimension is used to characterize the self-similarity of each pixel intensity series. 

(2)  A group sparsity for DT recognition is formulated. We used superposition structure to 

capture the joint sparsity model. The two structures captured the common and special 

features. 

(3) The formulation proposed in this paper is solved using ADMM algorithm to compute the 

problem robustly and quickly. 

The rest of the paper is organized as follows: Section 2 provides an in-depth review of 

related work, and Section 3 presents the proposed algorithm. The experimental results are 

shown in Section 4, and Section 5 summarizes the paper. 

2. Related Work 

Extensive literature on DT recognition is widely available [27–31]. We only briefly reviewed 

nominal DT recognition methods, chaos theory, and sparse representation, which are most 

related to the present work. 
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LDS is proposed in [5], which is learned by system identification as a model for DT 

recognition. The UCLA dataset provided contains 200 videos and is widely used as a 

benchmark dataset in various DT recognition methods. Gaussian mixture models of LDSs is 

used in [11] to model DTs. Kernel principal component analysis (PCA) is combined with 

LDSs to model a wider range of video motions [12]. DT is modeled as an LDS and compared 

with a probabilistic kernel [13]. Bag-of-words (BoWs) representation is used in [14] to model 

each DT video with LDSs and recognize DTs. However, the LDSs reside in a non-Euclidean 

space, making traditional methods of forming a codebook based on clustering Euclidean 

feature descriptors no longer applicable. 

Linear assumption undermines the performance of DT recognition because nonlinearity 

exists in DTs. Chaos theory is an ideal tool for analyzing nonlinear systems. Different chaotic 

features have been recently introduced in the computer vision community to represent chaotic 

time series. Trajectories of reference points are used as chaotic time series as well [2]. Chaotic 

features such as Lyapunov exponent, correlation integral, and correlation dimension are 

computed and combined with a feature vector. Experimental results validated the feasibility 

and merits of using chaotic features. People’s tracks are treated as chaotic time series in [4]. 

Chaotic features such as largest Lyapunov exponent and correlation dimension are calculated 

and concatenated to a feature vector to detect and locate anomalies. The 960-dimensional 

GIST feature of the dynamic scene video is computed in [3]. Each dimensional feature is 

treated as a time series. Chaotic features, including correlation integrals, Lyapunov exponent, 

and correlation dimension are combined to become a feature vector. Experiments showed that 

the feature vector can differentiate different dynamic scenes. 

Other chaotic features are used in image processing. A modified box count approach is 

proposed to estimate fractal dimension, and image segmentation experiment is effective [15]. 

Most of these works chose NN and SVM as classifiers. 

Sparse representation has achieved promising results compared with NN and SVM in [8]. 

This method assumes that the training data of a particular class approximately form a linear 

basis set for any testing data belonging to this class. However, sparse representation only 

selects data from a group of correlated training data and does not represent the testing data in 

terms of all training data from the correct group. Joint sparse model is proposed to overcome 

this problem. Image classification problem is casted into a multi-task joint covariate selection 

model that is optimized through accelerated proximal gradient method [16]. An effective 

projected gradient method is developed for optimization of      regularization problem and 

achieved good result on image annotation [17].  

In this work, the complex structure of features in different classes does not solely fit any 

model. The data structure model can be expressed as the superposition of a number of simpler 

models. The difficulty is how to characterize different structures without any ambiguity. Thus, 

we need not only to reduce the size of the problem by imposing the structure but also to further 

restrict each structure to be consistently incoherent from each other to obtain robustness.  

Inspired by the aforementioned study, the present work aims to improve the DT modeling 

and capitalize on the interdependence among features. To achieve this goal, we propose a 

chaotic feature vector modeling and group sparsity representation method for DT recognition. 

Different from prior works, we used box count dimension to depict the fractal information of 

the pixel intensity series. Furthermore, to capture the relationship among features, we imposed 

group sparsity condition that uniquely partitions the space model so that each non-zero 

element of the space belongs to only one structure, and the ADMM algorithm efficiently 

solved the optimization problem. 
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3. Proposed Algorithm 

The proposed approach has three interconnected components. First, given a video, chaotic and 

other features are calculated from each pixel intensity series and combined to a chaotic feature 

vector. A video can be represented by a feature vector matrix. Then, videos are represented by 

the well-known BoWs representation, which has been adopted by many computer vision 

researchers [14, 21, 22, 32]. Finally, group sparsity model is learned, and a testing video is 

represented by the BoWs model and classified by the model. 

Fig. 2 illustrates the flowchart of the DT recognition system.  
 

 
Fig. 2. Flowchart of the DT recognition system. In the training stage, chaotic feature vector is extracted 

from each pixel intensity series, and histograms are generated in the BoWs representation. All the 

training videos are represented by the histograms and fed into group sparsity model. In the testing phase, 

following a similar process, an unknown video is represented by a histogram of codewords learned from 

the training dataset, and a class label is outputted using the learned model. 

 

Details on chaotic feature vector, BoWs representation, and group sparsity model are 

discussed in the following sections. 

3.1 Chaotic feature vector 

This section presents the background material related to the chaos theory. Supposing a 

collection of           video sequences, a one-dimensional pixel intensity series  

             

 
    

       is shown in Fig. 1, where   and   are horizontal row and vertical 

column coordinate of         in video    
, respectively,   is the total number of the sequence, 

and         is a pixel intensity series. Takens’ theorem [18] states that a map exists between 

the original state space and a reconstructed state space. Thus, the pixel intensity series can be 

written into a matrix as 
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where     is embedding delay, and     is embedding dimension in position      .     and     

can be computed by mutual information algorithm [19] and false nearest neighbor algorithm 

[20], respectively. 

Chaotic features are measures that quantify the properties invariant under transformations 

of the state space. Next, the chaotic feature used in this work is introduced. 
 

3.1.1 Box count dimension 
The box count dimension [1] that measures the degree of a set held in space is one of the 

fractal dimensions. If a point set is covered by a regular grid of boxes with length  and )(N  

is the number of boxes containing at least one point, then box count dimension    is 
 

      
   

      

  
 



.                                                        (2) 

 

3.1.2 Chaotic Feature Vector 
Embedding delay and dimension are two important parameters to determine the structure of 

the phase space. The mean value of the pixel intensity series (   ) is an important indicator of 

pixel intensity series. The chaotic feature vector in this work is                  
     . Each 

pixel intensity series         is represented by a chaotic feature vector    , and a video    
 can be 

transformed to a feature vector matrix.  

 

3.2 BoWs representation 
The BoWs representation contains a codebook consisting of a set of representative chaotic 

feature vectors learned from the training samples. The codebook is learned by clustering 

through vector quantization. Each chaotic feature vector is assigned to the closest codeword in 

terms of Euclidean distance during clustering. These representative chaotic feature vectors are 

referred to as codewords in the context of BoWs representation. DT is represented as a 

histogram of the number of occurrences of each codeword count according to 
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where       
     denotes the number of occurrences of chaotic feature vector    in video    

, 

and   is the number of codewords.  

 

3.3 Group sparsity model 
Feature denotes the histogram obtained by BoWs representation in this section. We suppose 

that a training set             denotes the training feature in which         , whereas 

  is the number of training samples. In this model,    is the dimension of the training samples. 

  is the number of testing samples given the testing sample            ,         . 

Thus, we can consider the linear representation problem as follows: 

        
 
      ,                                                (4) 

where         is a reconstruction coefficient vector associated with the  th class, and   is 

the residual term.    denotes the representation coefficients from the  th class. Let   

         , the group sparsity representation is formulated as the solution to the following 

problem:  
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where   is the row group sparsity component, and   is the elementwise sparse component.    

and    are tradeoff parameters between reliable construction and joint sparsity regularization 

that control the group sparsity regularization on   and S, respectively. 

Group sparsity representation formulates the unknown parameter as a superposition of a 

row group sparsity matrix   and a sparse matrix   that correspond to the features shared across 

many and few samples, respectively. Different norms are enforced on   and  , encouraging 

row group sparsity in   and elementwise sparsity in  . The corresponding models use row 

group sparsity and elementwise sparsity regularizations.  

The ADMM algorithm [23] is a convex optimization algorithm that has recently attracted 

attention because of its applicability to various machine learning and computer vision 

problems. In particular, the ADMM algorithm can take advantage of the structure of the 

problems, which involve optimizing sums of fairly simple convex functions as follows: 
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   ,    and    are 

convexes. 

The scaled form of the ADMM algorithm consists of the following iterations: 
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where     is the scaled dual variable. 

The construction of the algorithms consists of two main steps: (1) reformulating the 

optimization problem into one that has partially separable objective functions by adding new 

variables and constraints, and (2) applying an alternating direction method to the resulting 

problem. 

The proposed group sparsity representation problem can be decomposed into two 

sub-problems [Equations (10) and (11)], and then each of the two sub-problems is iterated 

until convergence as follows: 
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The proposed ADMM algorithm comprises two alternately updating matrix sequences   

and  . The approach is summarized as Algorithm 1 (Fig. 3). 
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Algorithm 1: group sparsity algorithm implemented by ADMM. 
Input:  ,  ,  
Initialize  ,  ,  
k=1, 
While stopping criterion is not met do 

Solve the convex optimization problem: 
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The scaled form of ADMM consists of the following iteration. 
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 denotes proximal method for        [24]. 

  
Solve the convex optimization problem with updated     : 
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The scaled form of ADMM consists of the following iteration. 
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where     

  
 denotes proximal method for       . 

  
    k = k+1; 
end while 
      , 
Output: solution  ,  ,   to equation (5). 

 

Fig. 3. Group sparsity algorithm implemented by ADMM algorithm. 

4. Experiments 

4.1 Dataset introduction 
Most LDS-based DT recognition methods choose the UCLA dataset as the test bed 

containing 50 categories of different DTs, each with four gray-scale videos captured from 

different viewpoints. Each sequence consists of 75 frames with a size of 110×160. The 

UCLA-50 dataset is classified into 50 classes as implemented in [25]. 

The second dataset is called new DT-10 dataset. We collected 16 river videos with smooth 

shaking and combined them with the UCLA dataset. In each video, the dimension is reduced 

to 48×48 with 75 frames. The dataset is classified into 10 classes: boiling water (8), fire (8), 

flowers (12), fountains (20), plants (108), sea (12), smoke (4), water (12), waterfall (16), and 

river (16), where the numbers denote the number of video sequences in the dataset. This 

dataset is used to test the robustness of the proposed algorithm when DTs are taken under 

different viewpoints, scales, and other unconstrained environments. 

The third dataset is DynTex++ dataset [26], which contains 36 categories of different DTs 

with 100 DTs in each category. This dataset contains a total of 3600 videos, thereby providing 
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a richer benchmark.  

Fig. 4 shows examples from the new DT-10 and DynTex++ datasets. 

Codebook formation:  

The proposed four-attribute chaotic feature vector consists of embedding delay, embedding 

dimension, box count dimension, and mean value of pixel intensity series. The chaotic feature 

vector is normalized to obtain values between 0 and 1. To generate the codebook, K-means 

clustering algorithm is directly used on the Euclidian distance of the four-attribute vector 

across the entire training feature vector matrix. The obtained cluster centers form the 

histogram bins. The number of cluster K is the codebook size, which varies from 100 to 1000. 

After formation of the codebook, each four-attribute chaotic feature vector of a feature vector 

matrix is mapped to a certain cluster center, which should be the nearest neighbor of that 

chaotic feature vector. After all chaotic feature vectors of the feature vector matrix are mapped 

to the cluster centers, the feature vector matrix can be represented by a histogram of the 

codebook. 

The results reported in this work have been averaged for over 10 times. The regularization 

constants    and    are set to 0.01. 

We chose the smallest reconstruction error as the classification method, similar to the 

approach in [8]. 
 

 
Fig. 4. Examples from new DT-10 and DynTex++ datasets 

 

4.2 UCLA-50 dataset 
Single LDS Approach [29]: In the first baseline method, we modeled the entire DT video 

using a single LDS. Given a testing DT video, we computed the Martin distance between the 

testing LDS and each of the LDS models of the training videos, and then we used an NN 

classifier based on this distance. We tested all system orders in the range [2, 4, 6] and 

considered the best results out of these as the single LDS baseline. This approach is identical to 

the one originally proposed in [29]. 

Spatial temporal feature: The second baseline method is the BoWs [32] approach. We 

extracted spatial temporal features from the DT videos and reduced the dimensionality of the 

feature vector to a 100-dimensional vector using PCA. We used the original code provided by 

the authors at http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html.  

GIST [33] feature is adopted in the present work. We first extracted the 960-dimensional 

GIST feature per videoframe and used the BoWs approach. 

Dense SIFT [21] that represents the nature of images is also used in the present work along 

with the BoWs approach. 

Furthermore, a one-versus-all scheme is used. We listed the state-of-the-art results from the 

UCLA-50 dataset using BoWs representation related to Table 1. The confusion matrix is 

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
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shown in Fig. 5. The best recognition rate achieved on the UCLA-50 dataset is 81% [25]. The 

proposed approach achieved the best recognition accuracy of 92% among all cases. The size of 

the codebook is 700. 
 

 
Fig. 5. Confusion matrix on the UCLA-50 dataset in the proposed method. Each row and column in the 

confusion matrix corresponds to the ground truth class and assigned label, respectively. 

 

Table 1. Recognition results on the UCLA-50 dataset. 

Method 1-NN Sparse 

coding 

SVM Group sparsity 

representation 

[25] 81% — — — 

Dense SIFT 61% 62% 62% 64% 

GIST 41% 40% 38% 41% 

Spatial temporal 

feature 

70% 70% 69% 72% 

Pixel intensity 

series 

54.5% 60% 61% 62% 

Chaotic feature 

vector 

79% 91% 82% 92% 

 

4.3 New DT-10 dataset 
We chose 50% of the dataset for training and the rest for testing and compared the 

performance of the proposed approach with two baselines: single LDS approach and BoWs 

approach.  

The state-of-the-art results on the new DT-10 dataset using BoWs representation are listed 

in Table 2. Fig. 6 shows the confusion matrix for the proposed approach on the new DT-10 

dataset corresponding to the recognition rate of 89.48%. The codebook size is 200. The 

recognition rate using single LDS, dense SIFT, GIST, and spatial temporal feature is 63%, 
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63%, 55%, and 78.33%, respectively. 

 

 
Fig. 6. Confusion matrix on the new DT-10 dataset for the proposed method. 

 

Table 2. Recognition results of the new DT-10 dataset.  

Method 1-NN Sparse 

Coding 

SVM Group sparse 

representation 

Single LDS 63% — — — 

Dense SIFT 60% 61% 58% 63% 

GIST 42% 46% 45% 55% 

Spatial temporal 

feature 

78.33% — — — 

Pixel intensity series 76% 72% 73% 79% 

Chaotic feature vector 80% 82% 82% 89.48% 

 

Overall, the results are reasonable although a few classes performed poorly. The confusion 

matrix shows the confusion between “boiling” and “sea,” “sea” and “smoke,” “water” and 

“boiling,” and “waterfall” and “fountain.” This result is consistent with our intuition that 

similar DTs are more easily confused with one another. From the confusion matrix, one can 

observe that the “fire” and “smoke” are confused with “plant” and “sea,” respectively, but no 

confusion is observed between “waterfall” and “plant.” The reason may be that the chaotic 

feature vectors between these classes are similar because of the analogous structure of pixel 

intensity series in these classes. 

 

4.4 DynTex++ dataset 
The proposed approach is applied to the DynTex++ dataset using an experimental setup 

similar to the one in the new DT-10 dataset experiment. We chose 50% of the dataset for 

training and the rest for testing and compared the performance of the proposed approach with 

the single LDS approach to categorize DTs. The best recognition rate of single LDS on the 
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DynTex++ dataset is 47.2%. 

An average recognition rate of 53.4% is obtained for pixel intensity series and 65.11% for 

chaotic feature vector. The size of the codebook is 900. The best performance in [26] is 63.7% 

on the DynTex++ dataset. The state-of-the-art results on the DynTex++ dataset are listed in 

Table 3. 

 

 
Fig. 7. Confusion matrix on the DynTex++ dataset of the proposed method. 

 

Table 3. Recognition results on the DynTex++ dataset. 

Method 1-NN Sparse 

Coding 

SVM Group sparse 

representation 

Single LDS 47.2% — — — 

Dense SIFT 44% 49% 48% 55% 

GIST 23% 22% 24% 28% 

Spatial temporal 

feature 

50% 51% 50% 57% 

Pixel intensity 

series 

49.67% 35.67% 40% 53.4% 

Chaotic feature 

vector 

63.89% 64% 63% 65.11% 

 

4.5 Codebook size 
This experiment aims to validate the effect of different codebook sizes on DT recognition 

performances. As shown in Fig. 8, some dependencies of the recognition accuracy are 

observed on the codebook size, and recognition accuracy is not increased as the codebook size 

increased. “1,” “2,” and “3” stand for the recognition results of the proposed chaotic feature 

vector method for the UCLA-50 dataset, new DT-10 dataset, and DynTex++ dataset, 

respectively. “4,” “5,” and “6” denote the recognition results of the pixel intensity series as 
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features of the UCLA-50 dataset, new DT-10 dataset, and DynTex++ dataset, respectively. 

The recognition rate of the chaotic feature vector is higher than that of the pixel intensity series 

most of the time. 
 

 
Fig. 8. Recognition performance on UCLA-50 dataset, new DT-10 dataset, and DynTex++ dataset 

using different codebook sizes. The horizontal row indicates the codebook size, and the vertical column 

indicates the recognition rate. 

 

4.6 Discussions 
The following are observed from the experimental results: 

The chaotic feature vector can outperform LDSs in most cases. Therefore, we propose the 

use of the chaotic feature vector because, along with more accurate modeling of DTs, this 

vector also offers ways to combine with the group sparsity algorithm. The proposed group 

sparsity modeling approach significantly outperforms the traditional LDS-based method. 

Table 2, 3 demonstrate that the proposed approach exhibits more than 20% (new DT-10 

dataset) and 15% (DynTex++ dataset) improvement over LDS-based counterpart [29]. 

However, we did not compare these results with [14] because of different experiment dataset 

and experiment settings.  

As shown in Tables 1 to 3, the group sparsity method improved the recognition results for 

either the pixel intensity series or chaotic feature vector compared with the traditional methods. 

This result can be attributed to the fact that the group sparsity model captures the relationship 

among features. The model enforces the two norms regulating the common and special 

features across the samples, respectively. 

Errors appeared when the structures of pixel intensity series of the two classes are similar. 

Given that the chaotic feature vector mainly captures the texture information of the pixel 

intensity series, this vector ignores the other DT information, such as the motion information 

of the two frames.  

100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

1

2

3

4

5

6



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 11, November 2015                                4569 

Traditional DT recognition methods, such as the LDS-based one, have been studied and 

perfected for at least a decade, whereas the proposed method is built on chaotic feature vector 

and group sparsity learning, which have not been previously applied to DT analysis. The 

proposed method may have a much greater potential for improvement in the future. In addition, 

this model can be used in video segmentations, video localization, and other applications 

because the chaotic feature vector models each pixel intensity series.  

The present work and the one in reference [34] exhibit two differences. First, a different 

chaotic feature vector is used with [a]. Box count dimension and correlation dimension are 

used in [a] as well, which accounts for the redundancy in the feature vector. In the present 

work, we improved the chaotic feature vector to include the mean value of the pixel intensity 

series,which can capture the motion information of the series. The second difference is that 

multi-task learning is used in the present work, and the ADMM algorithm is used to solve the 

formulation. The group sparsity formulation decomposes the representation matrix to the 

inliers and outliers, which is more convenient to characterize the common parts of the same 

class and the different parts of different classes. The ADMM algorithm guarantees the 

convergence of the equation. The experimental results showed that the present work achieves 

better results than [34]. 

The ADMM algorithm convergence curve on three test videos is shown in Fig. 9. The value 

of the cost function in Equation (5) is gradually minimized with the increase in iteration 

number. Fig. 9 reflects the minimization speed of the cost function with respect to iterations. 

 

 
 

Fig. 9. Convergence curve of the cost function in Equation (5) on an example frame of three 

test videos for the ADMM algorithm. 
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5. Conclusion 

A powerful DT recognition framework is developed in this work based on the chaotic 

feature vector and group sparsity model. The proposed ideas are fairly general and applicable 

to other recognition problems, such as action recognition. The experimental results 

demonstrate that the proposed approach is highly accurate and is robust against scale 

variations and, to a certain extent, to viewpoint changes. This robustness is achieved by 

exploiting the discriminative nature of the chaotic feature vector modeling combined with 

joint group sparsity regularization. The chaotic feature vector extracted from each pixel 

intensity series induces effective characterization of the fractal property in the DTs, and the 

group sparsity model captures the relationship among features. Furthermore, the ADMM 

algorithm-based numerical solvers ensure the fast and accurate convergence of group sparsity 

model. Future work must include the deep learning method to directly learn the pixel intensity 

series and multiple features fusion to recognize the DTs. 
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