• Title/Summary/Keyword: channel time scheduling

Search Result 145, Processing Time 0.018 seconds

MAC Scheduling Algorithm in IEEE 802.15.3 HR-WPAN (고속 무선 개인화 네트워크를 위한 MAC 스케줄링 알고리즘)

  • Joo Sung-Don;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.41-52
    • /
    • 2005
  • In wireless networks there are various errors, caused by multi-path fading and interference between devices which lower the network Performance. Especially, performance of IEEE 802.IS.3 High-Rate WPAN (Wireless Personal Area Network) which is operated in ISM unlicensed frequency band is easily affected by channel errors. In this paper, we propose a scheduling algorithm which takes channel errors into consideration in scheduling asynchronous data traffic. The proposed scheduling algorithm can allocate CTA(Channel Time Allocation) proportionally in accordance with the requested channel time of each device. It also prevents waste of channel time by allocating CTA of the channel-error devices to other channel-error free devices. After recovering from the channel error, the devices are compensated as much as they conceded during channel error status. Simulation results show that the proposed scheduling algorithm is superior to the existing SRPT(Shortest Remain Processing Time) and RR(Round Robin) in throughput and fairness aspects.

Wireless Packet Scheduling Algorithm for OFDMA System Based on Time-Utility and Channel State

  • Ryu, Seung-Wan;Ryu, Byung-Han;Seo, Hyun-Hwa;Shin, Mu-Yong;Park, Sei-Kwon
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.777-787
    • /
    • 2005
  • In this paper, we propose an urgency- and efficiency-based wireless packet scheduling (UEPS) algorithm that is able to schedule real-time (RT) and non-real-time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time-utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality-of-service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modified-largest weighted delay first (M-LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.

  • PDF

Efficient Channel Scheduling Technique Using Release Time Unscheduled Channel Algorithm in OBS WDM Networks (OBS WDM 망에서 비 할당된 채널 개방시간을 이용한 효율적인 채널 스케줄링 기법)

  • Cho Seok-man;Kim Sun-myeng;Choi Dug-kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.912-921
    • /
    • 2005
  • Optical burst switching(OBS) is a promising solution for building terabit optical routers and realizing If over WDM. Channel scheduling Algorithm for reduce contention is one of the major challenges in OBS. We address the issue of how to provide basic burst channel scheduling in optical burst switched WDM networks with fiber delay lines(FDLs). In OBS networks the control and payload components or a burst are sent separately with a time gap. If CHP arrives to burst switch node, because using scheduling algorithm for data burst, reservation resources such as wavelength and transmit data burst without O/E/O conversion, because contention and void between burst are happened at channel scheduling process for data burst that happened the link utilization and bust drop probability Existent proposed methods are become much research to solve these problems. Propose channel scheduling algorithm that use Release Time of bust to emphasize clearance between data and data dissipation that is happened in data assignment in this treatise and maximize bust drop probability and the resources use rate (RTUC : Release Time Unscheduled Channel). As simulation results, Confirmed that is more superior in terms of data drop and link utilization than scheduling algorithm that is proposed existing. As simulation results, confirmed improved performance than scheduling algorithm that is proposed existing in terms of survival of burst, efficiency resource and delay. However, In case load were less, degradation confirmed than existent scheduling algorithm relatively, and confirmed that is superior in data drop aspect in case of load increased.

An Efficient Downlink Scheduling Scheme Using Prediction of Channel State in an OFDMA-TDD System (OFDMA-TDD 시스템에서 채널상태 예측을 이용한 효율적인 하향링크 스케줄링 기법)

  • Kim Se-Jin;Won Jeong-Jae;Lee Hyong-Woo;Cho Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.451-458
    • /
    • 2006
  • In this paper, we propose a novel scheduling algorithm for downlink transmission which utilizes scarce wireless resource efficiently in an Orthogonal Frequency Division Multiple Access/Time Division Duplex system. Scheduling schemes which exploit channel information between a Base Station and terminals have been proposed recently for improved performance. Time series analysis is used to estimate the channel state of mobile terminals. The predicted information is then used for prioritized scheduling of downlink transmissions for improved throughput, delay and jitter performance. Through simulation, we show that the total throughput and mean delay of the proposed scheduling algorithm are improved compared with those of the Proportional Fairness and Maximum Carrier to Interference Ratio schemes.

The Intermediate Channel Assignment based on Channel Status in High-rate WPAN (HR-WPAN에서 채널 상태에 따른 우회 채널 할당)

  • Lee Jung-Yun;Kim Sung-Su;Kim Jang-Hyung;Song Wang-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.832-842
    • /
    • 2006
  • Wireless Personal Area Networks(WAPANs) are designed for short-range ad hoc connectivity among portable devices. They have gained much attention in the industry recently. One of them, High-rate WPAN, is designed to support multimedia traffic that requires high data rates. But, High-rate WPAN standards don't specify the time slot assignment scheduling method of CAT(Channel Time Allocation). So, there has been many studies regarding time slot assignment scheduling of CAT. However, present studies involve demerits about not applying various types of errors in air interlace or having a starvation of a specific DEV(data device). In this paper, we propose algorithms about supplying the intermediate channel assignment in order to avoid these demerits. This method will help other methods that use time slot assignment scheduling of CTA.

A Packet Scheduling Algorithm for High-speed Portable Internet System (휴대 인터넷 시스템에서의 패킷 스케줄링 알고리즘 연구)

  • Choi, Seong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.1
    • /
    • pp.59-65
    • /
    • 2007
  • HPI (High-speed Portable Internet) system which provides high speed internet services is going to be commercialized soon. Since HPI provides simultaneously four different service types such as UGS (Unsolicited Grant Service), rtPS (real time Polling Service), nrtPS(non-real time Polling Service), and BE (Best Effort) under different QoS (Quality of Service) requirements and limited wireless channel resources, efficient packet scheduling mechanisms are necessary to increase the utilization of channels as well as to satisfy the various QoS requirements. This study regards the traffic data to be served as time series and proposes a new packet scheduling algorithm based on the nonparametric statistical test. The performance of the newly proposed algorithm is evaluated through the simulation analysis using a simulator that can evaluate the performance of packet scheduling mechanisms under various values of system parameters and measures such as packet delay time, data transmission rate, number of loss packets, and channel utilization.

Real-Time Transaction Scheduling Method without Timing Covert Channel (시간 비밀 채널을 제거하는 실시간 트랜잭션 스케줄링 기법)

  • 조숙경;김종훈;정현민;정미영;배영호;배해영
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.1053-1068
    • /
    • 2003
  • In this paper, we propose a new scheduling method without timing covert channel of real-time transaction for secure database systems that implement mandatory access control. Our scheduling method use the wait queue based on security level to remove timing covert channel. And it use priority queue that consider transaction type, deadline, and weight. Therefore, the proposed scheduling method prevents timing covert channel because it is kept noninterference between transactions with different security level, and maximizes the sum of the weight of transactions that satisfy its deadline. The simulation results, is a comparison of traditional methods, show that our scheduling method is improved to 30%.

  • PDF

On the Starvation Period of CDF-Based Scheduling over Markov Time-Varying Channels

  • Kim, Yoora
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.924-927
    • /
    • 2016
  • In this paper, we consider a cumulative distribution function (CDF)-based opportunistic scheduling for downlink transmission in a cellular network consisting of a base station and multiple mobile stations. We present a closed-form formula for the average starvation period of each mobile station (i.e., the length of the time interval between two successive scheduling points of a mobile station) over Markov time-varying channels. Based on our formula, we investigate the starvation period of the CDF-based scheduling for various system parameters.

Energy-Efficient Scheduling with Delay Constraints in Time-Varying Uplink Channels

  • Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.28-37
    • /
    • 2008
  • In this paper, we investigate the problem of minimizing the average transmission power of users while guaranteeing the average delay constraints in time-varying uplink channels. We design a scheduler that selects a user for transmission and determines the transmission rate of the selected user based on the channel and backlog information of users. Since it requires prohibitively high computation complexity to determine an optimal scheduler for multi-user systems, we propose a low-complexity scheduling scheme that can achieve near-optimal performance. In this scheme, we reduce the complexity by decomposing the multiuser problem into multiple individual user problems. We arrange the probability of selecting each user such that it can be determined only by the information of the corresponding user and then optimize the transmission rate of each user independently. We solve the user problem by using a dynamic programming approach and analyze the upper and lower bounds of average transmission power and average delay, respectively. In addition, we investigate the effects of the user selection algorithm on the performance for different channel models. We show that a channel-adaptive user selection algorithm can improve the energy efficiency under uncorrelated channels but the gain is obtainable only for loose delay requirements in the case of correlated channels. Based on this, we propose a user selection algorithm that adapts itself to both the channel condition and the backlog level, which turns out to be energy-efficient over wide range of delay requirement regardless of the channel model.

Low Complexity Multiuser Scheduling in Time-Varying MIMO Broadcast Channels

  • Lee, Seung-Hwan;Lee, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.71-75
    • /
    • 2011
  • The sum-rate maximization rule can find an optimal user set that maximizes the sum capacity in multiple input multiple output (MIMO) broadcast channels (BCs), but the search space for finding the optimal user set becomes prohibitively large as the number of users increases. The proposed algorithm selects a user set of the largest effective channel norms based on statistical channel state information (CSI) for reducing the computational complexity, and uses Tomlinson-Harashima precoding (THP) for minimizing the interference between selected users in time-varying MIMO BCs.