• Title/Summary/Keyword: channel interference

Search Result 1,849, Processing Time 0.032 seconds

Performance Enhancement of the Feedback Interference Canceller for the EDOCR in the ATSC DTV System (ATSC DTV 방송용 중계기 궤환간섭 제거 성능 개선)

  • Lee, Young-Jun;Park, Sung Ik;Kim, Heung Mook;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.955-966
    • /
    • 2013
  • We propose two feedback interference cancellers(FICs) to improve the performance of the equalization digital on-channel repeater(EDOCR) with the FIC for the ATSC DTV broadcasting system. The FIC estimates the feedback channel between Tx. and Rx. antennas of the repeater by cross-correlating the reference signal and the feedback signal. Since there is a DC pilot which ruins the white property of the ATSC DTV signals, the FIC cannot estimate the feedback channel accurately. To solve the problem, the structural method which uses an additional DC pilot free reference for feedback channel estimation and the algorithmic method based on the digital signal processing which whitens the ATSC DTV signals and performs the feedback cancellation in the whitened signal domain. Simulation results show that the proposed two FICs show better feedback cancellation performance than the conventional FIC.

Subcarrier-based Handover Scheme for Downlink OFDMA Cellular systems (하향링크 직교주파수분할다중접속 셀룰러 시스템을 위한 부반송파 기반 핸드오버 기법)

  • Wang, Han-O;Lee, Sung-Eun;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.60-66
    • /
    • 2008
  • In this paper, a new subcarrier-based handover scheme which exploits different channel gains of subcarriers in downlink OFDMA cellular systems. In this handover scheme, mobile users can obtain diversity gain by subcarrier selection. Feedback for unselected subcarriers reduces interference. The capacity enhancement by the handover scheme is originated from the following two characteristics of OFDMA systems. One is that interference per subcarrier is proportional to the traffic load. The other is that every subcarrier has different channel gain ?? 새 the Rayleigh fading channel. Therefore, selecting subcarriers with stronger channel gains results in diversity gain. Simulation results confirm that the proposed handover scheme improves the capacity of the OFDMA systems by reducing 24 percentage of the outage probability.

A Study on Dynamic Channel Assignment to Increase Uplink Performance in Ultra Dense Networks (초고밀도 네트워크에서 상향링크 성능향상을 위한 유동적 채널할당 연구)

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2022
  • In ultra dense networks (UDNs), macro user equipments (MUEs) have significant interference from small-cell access points (SAPs) since a number of SAPs are deployed in the coverage of macro base stations of 5G mobile communication systems. In this paper, we propose a dynamic channel assignment scheme to increase the performance of MUEs for the uplink of UDNs even though the number of SAPs is increased. The target of the proposed dynamic channel assignment scheme is that the signal-to-interference and noise ratio (SINR) of MUEs is above a given SINR threshold assigning different subchannels to SUEs from those of MUEs. Simulation results show that the proposed dynamic channel assignment scheme outperforms others in terms of the mean MUE capacity even though the mean SUE capacity is decreased a little lower.

Improvement of Underlay Cooperative Cognitive Networks Bandwidth Efficiency under Interference and Power Constraints

  • Al-Mishmish, Hameed R.M.;Preveze, Barbaros;Alkhayyat, Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5335-5353
    • /
    • 2019
  • The definition of the bandwidth efficiency (BE) of cognitive cooperative network (CCN) is the ratio between a number of the licensed slot(s) or sub-channel(s) used by the unlicensed users to transmit a single data packet from the unlicensed transmitter to unlicensed destination, and from unlicensed relay(s) to unlicensed destination. This paper analyzes and improves the BE in the underlay CCN with a new reactive relay selection under interference and power constraints. In other words, this paper studies how unlicensed cooperative users use the licensed network slot(s) or sub-channel(s) efficiently. To this end, a reactive relay selection method named as Relay Automatic Repeat Request (RARQ) is proposed and utilized with a CCN under interference and power constraints. It is shown that the BE of CCN is higher than that of cooperative transmission (CT) due to the interference and power constraint. Furthermore, the BE of CCN is affected by the distance of the interference links which are between the unlicensed transmitter to the licensed destination and unlicensed relay to the licensed destination. In addition, the BE for multiple relays selection over a CCN under interference and power constraints is also analyzed and studied, and it is shown that the BE of CCN decreases as the number of relays increases.

Outage Probability of Two-Hop Relay Networks with Related Interference

  • Pan, Peisheng;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1786-1804
    • /
    • 2013
  • We consider a specific interference-limited wireless relay system that comprises several cooperation units (CUs) which are defined as a source and destination node pair with an associated relay node. In the wireless relay system, all source nodes simultaneously transmit their own signals and the relay node in each CU then forwards the received signal to the destination node, causing co-channel interference at both the relay node and the destination node in each CU. The co-channel interference at the relay node is closely related to that at the destination node in each CU. We first derive the end-to-end outage probability in a CU over Rayleigh slow-fading channels with interference for the decode-and-forward (DF) relaying strategy. Then, on the assumption that each CU is allocated with equal power we design an optimal power allocation between the source node and the relay node in each CU to minimize the outage probability of the investigated CU. At last, in the case that each CU is not allocated with equal power and the sum of their power is constrained, we present an optimal power allocation between CUs to minimize the sum of the outage probability of all CUs. The analytical results are verified by simulations.

VSB-Based Digital On-Channel Repeater with Interference Cancellation System

  • Lee, Jae-Kwon;Suh, Young-Woo;Choi, Jin-Yong;Seo, Jong-Soo
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.670-678
    • /
    • 2011
  • This paper investigates the design and performance of a digital on-channel repeater (DOCR) for use in Advanced Television Systems Committee (ATSC) digital television (DTV) broadcasting. The main drawback of a DOCR is the echo interference caused by coupling between transmitter and receiver antennas, which induces system instability and performance degradation. In order to overcome this problem, an echo canceller based on the adaptive echo channel estimation (ECE) technique has been researched and applied for a DOCR. However, in the case of ATSC, the pilot signal, which is used for carrier synchronization, may cause a DC offset error and reduce the isolation performance of the echo canceller for a DOCR in an ATSC network. Moreover, since the multipath fading effect of a radio channel usually occurs in a real environment, it should be minimized to improve the overall performance of a DOCR. Therefore, due to the limited isolation performance of echo canceller and the multipath fading effect, an interference cancellation system (ICS) is proposed for a DOCR in an ATSC network. The performance of the proposed DOCR with an ICS is evaluated by software simulation and hardware test results.

Exploiting Optimal Throughput of Adaptive Relaying Based Wireless Powered Systems under Impacts of Co-channel Interference

  • Nguyen, Thanh-Luan;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2009-2028
    • /
    • 2018
  • Considering a dual-hop energy-harvesting (EH) relaying system, this paper advocates novel relaying protocols based on adaptive time power switching-based relaying (AR) architecture for amplify-and-forward (AF) mode. We introduce novel system model relaying network with impacts of co-channel interference (CCI) and derive analytical expressions for the average harvested energy, outage probability, and the optimal throughput of the information transmission link, taking into account the effect of CCI from neighbor cellular users. In particular, we consider such neighbor users procedure CCI both on the relay and destination nodes. Theoretical results show that, in comparison with the conventional solutions, the proposed model can achieve optimal throughput efficiency for sufficiently small threshold SNR with condition of reasonable controlling time switching fractions and power splitting fractions in concerned AR protocol. We also explore impacts of transmission distances in each hop, transmission rate, the other key parameters of AR to throughput performance for different channel models. Simulation results are presented to corroborate the proposed methodology.

Performance of Adaptive Equalizer in the Shallow Underwater Acoustic Communication Channel (천해 수중 음향 통신 채널에서 적응 등화기의 성능)

  • Choi, Hyun-Kyu;Lee, Sangmin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • The inter-symbol interference(ISI) is one of the main obstacles to reliable high-rate data communication in the shallow underwater acoustic channel. This paper studies on the simulation of adaptive equalizer used as a means of mitigating the ISI in the shallow underwater acoustic communication system. The underwater channel is modeled as a superposition of multiple paths, whose lengths and relative delays are calculated from the channel geometry. Based on this channel model, computer simulations are carried out to investigate the performance of adaptive equalizer in the shallow underwater acoustic channel.

MIMO Channel Diagonalization: Linear Detection ZF, MMSE (MIMO 채널 대각화: 선형 검출 ZF, MMSE)

  • Yang, Jae Seung;Shin, Tae Chol;Lee, Moon Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Compared to the MIMO system using the spatial multiplexing methods and the MIMO system using the diversity scheme achieved a high rate, but the lower the diversity gain to improve the data transmission reliability should separate the spatial stream at the MIMO receiver. In this paper, we compared Channel capacity detection methods with the Lattice code, the 3-user interference channel and linear channel interference detection methods ZF (Zero Forcing) and MMSE (Minimum Mean Square Error) detection methods. The channel is a Diagonal channel. In other words, Diagonal channel is confirmed by the inverse matrix satisfies the properties of Jacket are element-wise inverse to $[H]_N[H]_N^{-1}=[I]_N$.

A Constrained Adaptive Space-Time Interference Canceller for Multiuser WCDMA Systems (다중 사용자 WCDMA 시스템에서의 조건부 적응 시공간 간섭 제거기)

  • 양하영;노상민;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.298-307
    • /
    • 2002
  • This paper concentrates on developing and analyzing an advanced space-time multiuser receiver for WCDMA forward link. Through exploring the interference caused by co-channel users and delayed multipaths in CDMA, a constrained linear adaptive filter is adopted to cancel the interference. Furthermore, by utilizing the space-time diversity, an optimum diversity receiver, called a constrained adaptive space-time interference canceller (C-ASTIC), is proposed. For comparison, the statistical analysis of multiuser performance for WCDMA system with space-time diversity is described. The result of the simulation showed that C-ASTIC performs better than both the space-time diversity combining maximal ratio combiner (MRC) and the single-antenna adaptive interference canceller in a multipath fading channel. Also, the efficiency of the C-ASTIC in the multimedia communication environment is investigated under the multiuser, multi-transmit antenna, and multirate WCDMA system in a multipath fading channel. From the results, the C-ASTIC was validated to be useful for multi-rate WCDMA system through improving the performance gain by more than 3 dB at BER of 10$\^$-3/ in a half or more loaded system.